

Structural Optimization of a Four-Stroke Engine Connecting Rod: From High-Fidelity FEM Simulation to Artificial Intelligence

Department of Enterprise Engineering Bachelor's Degree in Mechanical Engineering Academic Year 2023/2024 Candidate: Danilo Lampasona

Supervisor: Prof. Marco Evangelos Biancolini

Co-supervisors: Eng. A. Chiappa, Eng. E. Di Meo,

Eng. R. Testi

- Two Optimization Campaigns
 - ► Stress reduction with constant weight
 - Unaltered engine dynamics
 - ► Increased safety factors and fatigue life
 - ► Weight reduction with constant stress
 - ► For a complete redesign from scratch
 - Lower emissions
- Development of a static ROM
 - ► Fast results
 - ► Reliable results

Materials

- Connecting Rod and Bearing Shell from Aprilia SR GT Scooter
- Engine: 4-stroke single-cylinder
 - ▶ 125 cc
 - Max Power: 11kW at 8900 RPM
 - ► Max Torque: 12 Nm at 6750 RPM
 - ► Max RPM: 10600 RPM
- Material: Shot-peened quenched and tempered 42CrMo4 steel
 - ► Yield Strength: 650 MPa
 - ▶ Ultimate Tensile Strength: 1000 MPa

Methods

- Kinematic analysis using loop-closure equations and dynamic analysis (MATLAB)
- ► Finite Element Analysis (Ansys Workbench)
- Optimization
 - ► RBF-based mesh morphing (Ansys RBF Morph add-on)
 - Design of Experiments (Ansys DesignXplorer)
 - Geometry reconstruction (SolidWorks Power Surfacing)
- Reduced Order Model (Ansys Twin Builder Static ROM Builder)

Slider-Crank Mechanism Analysis

- Kinematic Analysis
- Dynamic Analysis

Comparison with multi-body model ADAMS

Comparison of dynamic reactions: provided vs. verified at 6500 RPM

Structural Analysis baseline

- Most onerous load condition:
 - ► Maximum pressure
 - ► 6500 RPM, α =344.7°, θ =4.5°

A: Static Structural
Equivalent Stress - solo biella
Type: Equivalent (von-Mises) Stress

Unit: MPa Time: 3 s 18/05/2025 13:28:39 551,68 Max 490,48 429,29 368,09 306,9 245,7 184,51 123,31 62,118 0.92346 Min

Mesh morphing

- ▶ 7 parameters:
 - ▶ 3 under the big eye

- ▶ 2 on the connecting rod shank
- ▶ 1 on the big eye
- ▶ 1 on the small eye

Optimization

- ▶ 103 DP generated with *Latin Hypercube Sampling* (DoE)
- 2 optimization campaigns :
 - ► First campaign:
 - ▶ Von Mises minimization on the connecting rod body
 - Maximum volume variation of ±40 mm3
 - \blacktriangleright Maximum variation of the centroid displacement of $\pm 2 \text{ mm} \rightarrow \text{Commands}$ (APDL)
 - Second campaign:
 - ▶ Volume minimization
 - Maximum Von Mises stress below 551 MPa

Results of the first optimization

DP	P1	P2	Р3	P9	P10	P11	P13
113	1.239	0.787	-0.087	1.102	0.781	0.995	0.954
119	1.218	0.765	-0.146	1.003	0.900	0.903	0.952

DP	σ_{VM} [MPa]	$V_{\rm tot}~[{\rm mm}^3]$	$\Delta \boldsymbol{\sigma}$ [MPa]	$\Delta \sigma$ [%]	$\Delta V~[\%]$	$\Delta x_{\rm G} \ [{\rm mm}]$	
113	455.4	18016.4	-95.6	-17.4	0.9	-0.6	
119	542.0	14110.9	-9.0	-1.6	-21.0	4.4	

Results of the second optimization

DP	P1	P2	P3	P9	P10	P11	P13
113	1.239	0.787	-0.087	1.102	0.781	0.995	0.954
119	1.218	0.765	-0.146	1.003	0.900	0.903	0.952

DP	σ_{VM} [MPa]	$V_{\rm tot} \ [{\rm mm}^3]$	$\Delta \boldsymbol{\sigma}$ [MPa]	$\Delta \sigma$ [%]	$\Delta V \ [\%]$	$\Delta x_{\rm G} \ [{\rm mm}]$
113	455.4	18016.4	-95.6	-17.4	0.9	-0.6
119	542.0	14110.9	-9.0	-1.6	-21.0	4.4

Dynamic verification

- ▶ With Power Surfacing, the solid geometry was regenerated and the following was recalculated:
 - ▶ Moment of inertia along the z-axis.

▶ Using MATLAB code, the reaction forces for DP119 were recalculated \rightarrow variation of 1 MPa.

Buckling analysis

- ► Analysis with various constraint conditions
- Multiplicative coefficients of the loads always greater than one

DP	Big eye	$oldsymbol{ heta}(^{\circ})$	λ_1	λ_2
Baseline	Simple hinge	0	6.0127	14.437
113	Simple hinge	0	6.949	16.772
119	Simple hinge	0	4.630	12.696
Baseline	Simple hinge	-4.5	6.000	14.428
113	Simple hinge	-4.5	6.932	16.762
119	Simple hinge	-4.5	4.623	12.693
Baseline	Spherical hinge	-4.5	5.182	6.000
113	Spherical hinge	-4.5	6.248	6.933
119	Spherical hinge	-4.5	4.622	4.862

Modal analysis

- Analysis with various constraint conditions
- ➤ The first natural frequencies do not deviate much from the baseline results and are still greater than the crank frequency.

$$f_{\text{crank}} = \frac{10600}{60} = 176.67 \,\text{Hz}$$

DP	Big eye	$\mathbf{f_{n1}} \; [\mathrm{Hz}]$	$\mathbf{f_{n2}} \; [\mathrm{Hz}]$
Baseline	Simple hinge	2423.00	6497.70
113	Simple hinge	2641.50	6401.00
119	Simple hinge	2349.10	6178.90
Δf_{nMAX} %		9.02	-4.91
Baseline	Spherical hinge	727.88	2073.50
113	Spherical hinge	860.99	2209.50
119	Spherical hinge	876.81	2242.50
Δf_{nMAX} %		-20.26	8.15

Reduced order model (ROM)

- ► SVD:

$$\mathbf{M}_{m imes n} = \mathbf{U}_{m imes j} \cdot \mathbf{\Sigma}_{j imes j} \cdot \mathbf{V^T}_{j imes n}$$

- ightharpoonup With matrix M having the snapshots of the training set as columns
- $lackbox{ } \mathbf{U}$ and \mathbf{V} orthonormal matrices for which : $\mathbf{U}^T \cdot \mathbf{U} = \mathbf{V}^T \cdot \mathbf{V} = \mathbf{I}_{j imes j}$ $\mathbf{U} \cdot \mathbf{U}^T = \mathbf{I}_{m imes m}$
- $ightharpoonup \Sigma$ diagonal matrix containing the singular values σ of the matrix ${f M}$
- Low-rank approximation of \mathbf{M} : $\mathbf{M}_r = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- \triangleright The solution field can be approximated as a linear combination of the first r modes:

$$\mathbf{x} = \sum_{i=1}^{r} \alpha_i \mathbf{u_i}$$

ROM results

- ▶ 20 modes
- ▶ 80% training set, 20% validation set
- ► Maximum percentage error of the ROM: 7%

	σ_{VM} FEM (N)	$\sigma_{\mathrm{VM}} \ \mathrm{ROM} \ (\mathrm{N})$	$\Delta \sigma_{\mathbf{VM}} \ [\%]$
DP113	455.36	456.52	-0.26
DP119	542.04	566.00	-4.42

Conclusions and future developments

- ► First optimization: 17.4% reduction in maximum stresses
- ▶ **Second optimization**: 21% reduction in mass
- ► The components were lightened while maintaining structural reliability and preserving dynamic performance.
- A multi-objective optimization could be performed by identifying the Pareto front or by finding a compromise solution through interaction with the ROM.
- ► Future perspectives include the integration of the ROM model within **augmented reality** tools. This approach would enable direct and intuitive interaction with the structural behavior of the component.

Thank you for your attention

Department of Enterprise Engineering Bachelor's Degree in Mechanical Engineering Academic Year 2023/2024 Candidate: Danilo Lampasona

Supervisor: Prof. Marco Evangelos Biancolini

Co-supervisors: Eng. A. Chiappa, Eng. E. Di Meo,

Eng. R. Testi