

Corso di Laurea Magistrale in Ingegneria Biomedica

Development of a fast high fidelity FSI workflow to simulate polymeric aortic valves: a RBF mesh morphing study

Relatori:

Ing. Simona Celi

Prof. Marco Evangelos Biancolini

Ing. Emanuele Gasparotti

Candidato:

Leonardo Geronzi

Introduction

2018: cardiovascular diseases are the first cause of death in the world [1]

→ Aortic Stenosis: shrinkage of the aortic orifice

Polymeric-Prosthetic Heart Valves (P-PHVs)

- Crimpable
- Less inclined to coagulation problem
- Customizable
- Easy to be produced
- Cheap

Currently, FDA² and ASME³ are forcing on the advancement and widespread adoption of new approaches based on numerical simulation which require better computational tools that are fast, accessible and individually adaptable

State of the Art - Finite Element Analysis (FEA)

Structural simulations

Output parameters:

- Equivalent von-Mises stress
- Equivalent strain
- Maximum displacement
- Maximum Geometric Orifice Area (GOA_{max})
- Maximum Coaptation Area (CA_{max})

Fluid-Structure Interaction (FSI) analysis

Output parameters:

- Volumetric Flow Rate (VFR)

Wall Shear Stress (WSS)
$$\tau_w = \mu \left(\frac{\partial u}{\partial y}\right)_{y=0} = 32\mu \frac{Q}{\pi d^3}$$

High computational time to solve simulations

Development of a novel numerical approach able to reduce computational time with *fast-high fidelity*

Coupling between FSI and mesh morphing techniques

Generation of a new upgradable and adaptable parametric model of the aortic valve

Influence of parameters with respect to output values

Theoretical background - Mesh morphing

Method for changing the shape of a surface, preserving its topology: nodal positions are only updated

Based on Radial Basis Functions (RBF)

To interpolate in the space a scalar function s(x) defined at discrete points, giving the exact values at original points

$$s(x) = \sum_{i=1}^{N} \gamma_i \varphi \left(\left\| x - x_{s_i} \right\| \right) + h(x)$$

$$h(x) = \beta_1 + \beta_2 x + \beta_3 y + \beta_4 z$$

3D-space

$$\begin{cases} s_{x}(x) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi \left(\left\| x - x_{s_{i}} \right\| \right) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s_{y}(x) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi \left(\left\| x - x_{s_{i}} \right\| \right) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ s_{z}(x) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi \left(\left\| x - x_{s_{i}} \right\| \right) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{cases}$$

γi: weights of the model

φ(·): RBF

x: generic position

xsi: source point

h(x): polynomial term

- 1. Valve design
 - Python & SpaceClaim
- 2. Structural analysis
 - Ansys Workbench Mechanical
- 3. Remeshing FSI
 - Ansys Workbench Mechanical & Fluent System Coupling
- 4. Morphing FSI
 - Fluent & RBF Morph Add-On

Parametric model

Identification of a surgical candidate

Design parameters

	Parameter	Meaning	Value
FIXED*	r_e	External radius of the circular ring	Fixed: 12 mm
	r_i	Internal radius of the circular ring	Fixed: 11 mm
	θ	Revolution angle of the leaflets	Fixed: 120°
	s_l	Thickness of the leaflets	Fixed: 0,3 mm
L	h_{v}	Height of the whole valve	Fixed: 20 mm
	e_x	Ellipse-x parameter for the entrainment	Parametrized
	e_y	Ellipse-y parameter for the entrainment	Parametrized
	r_l	Radius of the internal arc which defines the upper surface of the leaflet	Parametrized
	g	Semi-gap between one leaflet and the other one in proximity to the ring	Parametrized
	$r_{junct-est}$	Junction radius between the external face of the leaflet and the ring	Parametrized
	$r_{junct-int}$	Junction radius between the internal face of the leaflet and the ring	Parametrized
	h _{cone-cut}	Maximum internal cutting height to generate Lunula angle of the valve	Parametrized

^{*@} patient specific level

M&M – Valve design

Parametric model

Identification of a surgical candidate

Design parameters

	Parameter	Meaning	value
FIXED*	r_e	External radius of the circular ring	Fixed: 12 mm
	r_i	Internal radius of the circular ring	Fixed: 11 mm
	θ	Revolution angle of the leaflets	Fixed: 120°
	s_l	Thickness of the leaflets	Fixed: 0,3 mm
	h_{v}	Height of the whole valve	Fixed: 20 mm
	e_x	Ellipse-x parameter for the entrainment	Parametrized
	e_y	Ellipse-y parameter for the entrainment	Parametrized
	r_l	Radius of the internal arc which defines the upper surface of the leaflet	Parametrized
	g	Semi-gap between one leaflet and the other one in proximity to the ring	Parametrized
	r _{junct-est}	Junction radius between the external face of the leaflet and the ring	Parametrized
	$r_{junct-int}$	Junction radius between the internal face of the leaflet and the ring	Parametrized
	h _{cone-cut}	Maximum internal cutting height to generate Lunula angle of the valve	Parametrized

*@ patient specific level

M&M – Structural simulations

Mechanical

- Material properties: isotropic linear elastic (E= 3 MPa, v= 0.4)
- Element type: tetrahedral (from 237533 to 368730)
- Boundary condition: bottom surface of the circular ring fixed in displacement

Opening

- 15 opening simulations (O₁-O₁₅)
- Transvalvular systolic pressure

Closing

- 15 closing simulations (C₁-C₁₅)
- Transvalvular <u>diastolic pressure</u>

M&M – Fluid-Structure Interaction

From structural analysis: Parametric set 15

Two inlet boundary conditions

Fluid Setting:

- Newtonian fluid (μ= 4 cP) Viscous-Laminar
- $\rho = 1000 \text{ kg/m}^3$
- Number of elements 1.5 million
- Time step= 1e-5 s
- Simulation time= 14 ms

Structural Setting:

- Number of elements 0.5 million
- Transvalvular systolic pressure @ ventricular side

M&M – Fluid-Structure Interaction *Remeshing-FSI*

M&M – Fluid-Structure Interaction Remeshing-FSI

Dynamic meshing tools:

- 1) Spring-Based Smoothing
- 2) Remeshing

Starting conditions

- Maximum starting Skewness=0.694
- Minimum element length=0.1 mm
- Maximum element length=1.8 mm

Remeshing if

Limit conditions

- Skewness > 0.72
- Minimum element length < 0.06 mm
- Maximum element length > 2.5 mm

M&M – Fluid-Structure Interaction *Morphing-FSI*

First strategy – one single direction of morphing

Source and Target points extracted with M-APDL by sampling the valve displacement every 3 mm

M&M – Fluid-Structure Interaction *Morphing-FSI*

"bcL

First strategy – one single direction of morphing

Source and Target points extracted with M-APDL by sampling the valve displacement every 3 mm

M&M – Fluid-Structure Interaction *Morphing-FSI*

First strategy – one single direction of morphing

Source and Target points extracted with M-APDL by sampling the valve displacement every 3 mm

FLUENT

Step 1: from P₂ to P₀

- To reach initial position
- Saving of the mesh with a deformation already in place
- Initialization of the flow

New morphing procedure

Step 1: from P₂ to P₀

- To reach initial position
- Saving of the mesh with a deformation already in place
- Initialization of the flow

Step 2: from Poto Po

 To morph all the opening of the valve

New morphing procedure

Step 1: from P₂ to P₀

- To reach initial position
- Saving of the mesh with a deformation already in place
- Initialization of the flow

Step 2: from Po to Po

 To morph all the opening of the valve

Scheme program

$$A_0(t) = \begin{cases} 0, & \text{if } t = 0\\ \left(\frac{t}{t_1}\right)^2, & \text{if } 0 < t < t_1\\ 1, & \text{if } t \ge t_1 \end{cases} \qquad A_i(t) = \begin{cases} 0, & \text{if } t \le t_i\\ \frac{t - t_i}{t_{i+1} - t_i}, & \text{if } t_i < t < t_{i+1}\\ 1, & \text{if } t \ge t_{i+1} \end{cases}$$

M&M – Fluid-Structure Interaction

Complete opening simulation

Only one inlet boundary condition

Fluid Setting:

- Newtonian fluid (μ= 4 cP) Viscous-Laminar
- $\rho = 1000 \text{ kg/m}^3$
- Number of elements 0.9 million
- Time step= 5e-5 s
- Simulation time: 110 ms

Structural Setting:

- Number of elements 0.5 million
- Transvalvular systolic pressure @ ventricular side

Results – Structural simulations

Opening O₁₅

- Maximum eq. von-Mises stress: 1.05 MPa
- Maximum eq. strain: 0.344
- Maximum displacement: 8.74 mm
- GOA_{max} : 363.6 mm² [7]

Results – Structural simulations

Opening O₁₅

- Maximum eq. von-Mises stress: 1.05 MPa
- Maximum eq. strain: 0.344
- Maximum displacement: 8.74 mm
- GOA_{max} : 363.6 mm² [7]

Closing C₁₅

- Maximum eq. von-Mises stress: 0.59 MPa
- Maximum eq. strain: 0.21
- Maximum displacement: 6.18 mm
- CA_{max}: 28.6 mm² [8]

Results – Pressure inlet FSI

Results – Pressure inlet FSI

Results – Velocity inlet FSI

Results – Velocity inlet FSI

Results – Full opening FSI

Results – Full opening FSI

Conclusions

- High fidelity workflow to solve FSI simulations faster than 15 times in comparison to standard remeshing procedures with similar results
- Based on a parametric patient-specific heart valve design
- Output values consistent with State of the Art

Future developments

- Implementation of a 2-Way FSI (remeshing and morphing)
- Closing FSI simulation

Thank you for the attention