Human Body Models customization by advanced mesh morphing: parametric THUMS

Emanuele Di Meo - RBF Morph

Emanuele Lombardi - University of Rome "Tor Vergata"

Andrea Lopez - University of Rome "Tor Vergata"

Prof. Marco Evangelos Biancolini - University of Rome "Tor Vergata"

17, 2024 | Hanau, Germany

April 16 –

A brief introduction to RBF Morph

Empowering Engineers

TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA

Shape parameterization strategy

- Geometric parameterization by mesh morphing
- The principle is to take the control on a set of point and to transfer the deformation to the whole mesh
- A new shape of the CAE model ready to run
 - for structural analysis in the FEA solver
 - for flow analysis in the CFD solver

| Hanau, Germany

17, 2024

Radial Basis Functions mesh Morphing

- We adopt Radial Basis Functions (RBF) to drive mesh morphing (smoothing) from a list of source points and their displacements
 - Surface shape changes
 - Volume mesh smoothing
- RBF are recognized to be one of the best mathematical tool for mesh morphing

 Marce trangelos Biancolini

 Fast Radial

 Basis Functions

 for Engineering

 Applications

$$\begin{aligned} s_x(\mathbf{x}) &= \sum_{i=1}^N \gamma_i^x \varphi(\|\mathbf{x} - \mathbf{x}_{s_i}\|) \\ s_y(\mathbf{x}) &= \sum_{i=1}^N \gamma_i^y \varphi(\|\mathbf{x} - \mathbf{x}_{s_i}\|) \\ s_z(\mathbf{x}) &= \sum_{i=1}^N \gamma_i^z \varphi(\|\mathbf{x} - \mathbf{x}_{s_i}\|) \end{aligned}$$

Radial Basis Functions mesh Morphing

www.rbf-morph.com

- No re-meshing
- Can handle any kind of mesh
- Can be integrated in the CAE solver (FEM/CFD/FSI)
- Highly parallelizable
- Robust process
- The same mesh topology is preserved (adjoint/ROM)
- CAD morphing (iso-brep)

We make CAE models parametric

- RBF Morph makes the CAE model parametric
- Shape parameters are driven by an orchestrator
- Shape parameters can be used to generate snapshots for real time Digital Twins (ROM/AI)

17, 2024 | Hanau, Germany

April 16 -

7

We make CAE models parametric

- Morphing is a key enabler for optimization and Digital Twins
- The turnaround time of the optimization is usually reduced by a factor five (weeks becomes days)

April 16 – 17, 2024 | Hanau, Germany

Parameter-free shape optimization

- The new shape can be guided by the CAE solution itself (organic shapes)
 - Coupled with the CFD adjoint solver
 - BGM (Biological Growth Method) optimizer in FEA solver

17, 2024 | Hanau, Germany April 16 –

0.61

Skewness

Morphing onto the style (parameter-free)

Use case: reusing the LS-DYNA model of a different car

Honda Accord mesh matching the **Chevrolet Silverado shape**

Morphing onto the performances (parameter-based)

Honda Accord mesh matching the **Chevrolet Silverado shape** and crashworthiness needs

TOR VERGATA

automotive

Quality check

Honda Accord

starting mesh

Use case: reusing the LS-DYNA model of a different car

•		В	
1	Μ.	LS-DYNA	
2	0	Engineering Data	 _
3	6	Model	× .
4		Setup	 _
5	1	Solution	 _
6	6	Results	 _
	D	YNA-Crash-Stand	lard

1	۲	Mechanical Model	
2	٢	Engineering Data	× .
3	sc	Geometry	
4	۲	Model	

	•	D		
7	1	Μ.	LS-DYNA	
	2	۲	Model	 _
	3	٢	Setup	 _
	4	G	Solution	 _
	5	6	Results	× 🖌
	D	YNA	-Crash-M	orphed

LS-DYNA

TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA

Use case: multi-physics optimization of a powertrain

- Powertrain optimization using the BGM method to improve the durability of an internal combustion engine and of an electric motor
 - Thermal engine: mitigation of a hotspot in the engine head in a district close to the exhaust valve
 - Multi-physics analysis of the intake and exhaust flows, the liquid coolant flow and the thermos-structural analysis
 - 15% reduction of the hot-spot stress

Use case: multi-physics optimization of a powertrain

- Powertrain optimization using the BGM method to improve the durability of an internal combustion engine and of an electric motor
 - The same BGM approach is used for the rotor of an electric motor with the structural analysis coupled with an EM one
 - The shape of the pocket is changed getting a 27% stress reduction

automotive

| Hanau, Germany

2024

17

April 16

Use case: aerodynamic shape optimization

- Parametric mesh morphing can be implemented in the automotive and motorsport fields for aerodynamic shape optimization
 - Car shape refinement for aerodynamics improvement, can be implemented in interactive design
 - Formula 3 vehicle drag reduction, through shape optimization

Use case: motorbike aerodynamics development in VR

- Motorbike aerodynamic optimization and reduced-order model building for virtual reality
 - Mesh morphing parametric shape optimization in the selected interest area
 - Drag coefficient reduction compared to the original shape
 - Parametric morphing enables reduced-order model building for interactive visualization

Parametric THUMS

Empowering Engineers

Parametric THUMS: Introduction

- Vehicle safety: injury predictions
- Injury prediction tools
- Crash tests: ATDs (Anthropometric test devices)

April 16 – 17, 2024 | Hanau, Germany

Parametric THUMS: Introduction

- Vehicle safety: injury predictions
- Injury prediction tools
- Crash tests: HBMs (Human body Models)

HBMs vs ATDs

- \checkmark Complete Anatomy \rightarrow Accuracy
- \checkmark Omnidirectionality \rightarrow Flexible usage
- A Small number of shapes available

Small number of shape

Small size adult female

 Shape corresponding to the 5th statistical anthropometric percentile

Small number of shape

Middle size adult male

 Shape corresponding to the 50th statistical anthropometric percentile

Small number of shape

Large size adult male

 Shape corresponding to the 95th statistical anthropometric percentile

17, 2024 | Hanau, Germany

April 16

Small range of shape

 In the development of HBMs, most anthropometric shapes have remained unexplored

Human Body Models customization

Total Human Model for Safety: THUMS

- Developed by TOYOTA
 - Developed since 1997
 - Available as open source since 2021
- Advanced features

<u>17, 2024 | Hanau, Germany</u>

April 16 -

Total Human Model for Safety: THUMS

Empowering En

Internal organs geometry extremely detailed

TOR VERGATA

Total Human Model for Safety: THUMS

Complete modeling of muscolar function through onedimensional elements activated by feedback controllers

Total Human Model for Safety:

Unique shapes available for male models: 50th and 95th statistical anthopometric percentile

17, 2024 | Hanau, Germany

April 16 –

27

Total Human Model for Safety: THUMS

Mesh composed of over 2 milion elements

Objective

Define a method to create THUMS corresponding to the generic percentile

RBF mesh morphing

Through RBF mesh morphing, it is possible to modify a discretized geometry by imposing the displacement of a certain number of its nodes

April 16 – 17, 2024 | Hanau, Germany

Mesh Morphing driven by RBF

Example:

Mesh Morphing driven by RBF

Example:

TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA

rbf™

Source points selection

Source points in AM50

Homologous edges in AM95

TOR VERGATA

RBF displacements

Combining the 2 operations \longrightarrow Displacements: $D_{50-95,i}$

RBF displacements: calculation of $D_{50-95,i}$

Being in the global reference:

$$\boldsymbol{x_{50,i}} = \left\{ x_{50,1}, \dots, x_{50,n} \right\}_{i}^{t} \quad \boldsymbol{\leftarrow} \text{ x-nodal coordinates of the i-th edge of AM50}$$
$$\boldsymbol{x_{95,i}} = \left\{ x_{95,1}, \dots, x_{95,m} \right\}_{i}^{t} \quad \boldsymbol{\leftarrow} \text{ x-nodal coordinates of the i-th edge of AM95}$$

and in the local barycentric reference:

 $\overline{\boldsymbol{x}}_{50,i} = \left\{ \bar{\boldsymbol{x}}_{50,1}, \dots, \bar{\boldsymbol{x}}_{50,n} \right\}_{i}^{t} \quad \boldsymbol{\leftarrow} \text{ x-nodal coordinates of the i-th edge of AM50}$ $\overline{\boldsymbol{x}}_{95,i} = \left\{ \bar{\boldsymbol{x}}_{95,1}, \dots, \bar{\boldsymbol{x}}_{95,m} \right\}_{i}^{t} \quad \boldsymbol{\leftarrow} \text{ x-nodal coordinates of the i-th edge of AM95}$

RBF displacements: calculation of $D_{50-95,i}$

 $\Delta_{x,i} = mean\{x_{50,i}\} - mean\{x_{95,i}\} \quad \leftarrow \text{Translation delta along x-axis}$

 $S_{x,i} = \frac{\max\{\overline{x}_{95,i}\} - \min\{\overline{x}_{95,i}\}}{\max\{\overline{x}_{50,i}\} - \min\{\overline{x}_{50,i}\}} \quad \leftarrow \text{Scaling factor along x-axis}$

$$\boldsymbol{D}_{\boldsymbol{x}\,\boldsymbol{50-95},\boldsymbol{i}} = \Delta_{\boldsymbol{x},\boldsymbol{i}} \cdot \boldsymbol{I}_{n\times 1} + (S_{\boldsymbol{x},\boldsymbol{i}}-1) \cdot \overline{\boldsymbol{x}}_{\boldsymbol{50},\boldsymbol{i}}$$

likewise, working on the y and z-axys: $D_{50-95,i} = \begin{cases} | & | & | \\ D_{x \, 50-95,i} & D_{y \, 50-95,i} & D_{z \, 50-95,i} \\ | & | & | \\ \end{vmatrix}$

TOR VERGATA

Parametric mesh morphing

- δ : modulation parameter
- D_{50-P,i}: source points displacement in the mesh morphing to the generic percentile

$$D_{50-P,i} = \delta * D_{50-95,i}$$

With δ varying linearly between 0 and 1 from the 50th to the 95th statistical anthropometric percentile

Automatic procedure in 4 phases:

www.carhs.de

Hanau, Germany

2024

17

April 16

Reading the LS-DYNA simulation K-FILE relative to THUMS AM50

Definition

Source points coordinates Percentile **PTS-FILE** 1522 -811.018 67.19753 -288.0066 -38.177466141229516 3.1974164850510567 -6.893923740617389 81000774 0 s p -807.6782 68.16429 -292.2721 -37.94366307172289 3.2650942954424296 -7.192525414021546 81000775 0 s p -804.5713 69.83803 -296.3405 -37.72616419255343 3.3822640773577533 -7.4773293169819155 81000776 0 s p righe omesse 109.8944 100.7405 423.7275 13.755605995039172 8.026604098779977 32.901360113398766 89589508 0 s p 150.0275 106.0441 408.1986 18.249523776210857 8.581565927666018 32.121853233288185 89589563 0 s p 27.22313 111.8411 378.0515 4.498461885936079 9.188156492952311 30.608554038536354 89589795 0 s p

TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA

Writing

Writing the new simulation K-FILE

Simulation

- AM50m95: mesh morphing to 95^{th} percentile \rightarrow 100 kg
- AM50m75: mesh morphing to 75^{th} percentile \rightarrow 89 kg
- AM50m35: mesh morphing to 35^{th} percentile \rightarrow 65 kg

NSYS LS-DYNA Frontal impact kinematic analysis

Simulation

Mesh Morphing: 50° percentile

Simulation

-200

y (mm)

200

-1000

43

-500

x (mm)

Mesh Morphing: 50° percentile

April 16 – 17, 2024 | Hanau, Germany

Mesh Morphing: 50° percentile 600 0

April 16 – 17, 2024 | Hanau, Germany

Results: graphic comparison

Empowering Engineers

Geometry quality: AM50m95 vs AM95

Results: MDA and MDM

- MDA: average displacement existing between homologous zones of distint meshes
- MDM: maximum displacement

Body areas comparison				
area	MDA [mm]	MDM [mm]	MDA/MDM	
Busto	7.10	24.36	29%	
Viso	4.05	11.45	35%	
Spalla	3.42	9.06	37%	
Stinco	1.68	3.14	53%	
Cassa toracica	1.97	6.31	31%	
Ossa pelviche	2.48	7.52	32%	
Average	3.65	8.46	34%	

Results: kinematic analysis

automotive

Empowering English

- Linear influence
- Differences introduced by the mesh morphing
 0.8 mm/percentile

Results: kinematic analysis

S_{mean} related to the AM95 [mm]			
Control points	AM50	AM50m95	
Bacino	55.89	8.57	
Collo	54.71	6.67	
Busto-spalla destra	61.72	9.87	
Busto-spalla sinistra	58.36	4.34	
Stinco-caviglia destra	17.31	13.91	
Stinco-caviglia sinistra	17.84	14.70	
Piede destra	18.97	19.62	
Piede sinistra	18.99	19.62	
Average	34.42	7.84	

TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA

Average	34.4
Piede sinistra	18.9
Piede destra	18.9
Stinco-caviglia sinistra	17.8
Stinco-caviglia destra	17.3
Busto-spalla sinistra	58.3
Busto-spalla destra	61.7
Collo	54.7
Bacino	55.8

Conclusion

Thank you for your attention!

emanuele.dimeo@rbf-morph.com

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com

Emanuele Di Meo - RBF Morph Emanuele Lombardi - University of Rome "Tor Vergata" Andrea Lopez - University of Rome "Tor Vergata" Prof. Marco Evangelos Biancolini - University of Rome "Tor Vergata"

