

Design And Optimization Of Aeronautical Components And Digital Twins Development

A. Lopez, U. Cella, C. Groth, M. E. Biancolini

Università di Roma, Tor Vergata

AIAS2023 | 6-9 Settembre | Genova

Summary

Introduction: Case Study

First task:

• Design and optimization of scoop air intake

Second task:

• Digital twin development of scoop air intake

Objective:

- The aim is to create an accurate and reliable model that allows to evaluate in real time both scalar quantities and field quantities;
- The generated model can be integrated with the rest of the aircraft;

Mesh Morphing RBF (Radial Basis Function)

Weight and radial function

$$f^{x}(x) = \sum_{\substack{i=1 \\ m \\ i=1}}^{m} \gamma_{i}^{x} \phi(\|c_{i} - x\|) + \beta_{1}^{x} + \beta_{2}^{x} x_{1} + \beta_{3}^{x} x_{2} + \beta_{4}^{x} x_{3} + \beta_{1}^{y} (x) = \sum_{\substack{i=1 \\ i=1}}^{m} \gamma_{i}^{y} \phi(\|c_{i} - x\|) + \beta_{1}^{y} + \beta_{2}^{y} x_{1} + \beta_{3}^{y} x_{2} + \beta_{4}^{y} x_{3} + \beta_{1}^{z} + \beta_{2}^{z} x_{1} + \beta_{3}^{z} x_{2} + \beta_{4}^{z} x_{3} + \beta_{1}^{z} + \beta_{2}^{z} x_{1} + \beta_{3}^{z} x_{2} + \beta_{4}^{z} x_{3} + \beta_{1}^{z} + \beta_{2}^{z} x_{1} + \beta_{3}^{z} x_{2} + \beta_{4}^{z} x_{3} + \beta_{4}^{z} x_{3} + \beta_{1}^{z} + \beta_{2}^{z} x_{1} + \beta_{3}^{z} x_{2} + \beta_{4}^{z} x_{3} + \beta_{4}^{z}$$

 $\begin{pmatrix} M & P \\ P^{T} & 0 \end{bmatrix} \begin{pmatrix} \gamma \\ \beta \end{pmatrix} = \begin{pmatrix} g \\ 0 \end{pmatrix}$ $With \quad M = \phi(\|c_{i} - c_{j}\|)$ $P_{j} = \begin{bmatrix} 1 \ x_{1} \ x_{2} \ \dots \ x_{n} \end{bmatrix}$

Boundary conditions

RBF Classic Meshing Solving Meshing Solving Geometry Geometry Morphing Meshing Solving Geometry Solving Meshing Solving Geometry Morphing Solving n n

Polynomial term

Optimization workflow Response surface

• Linear Regression:

 $y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \varepsilon_{i}$ $y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{3} + \beta_{4}X_{i2}^{2} + \varepsilon_{i}$ $y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}X_{i2} + \beta_{4}\log X_{i3} + \varepsilon_{i}$

- A weighted linear combination of RBF functions $f(x) = \sum_{i=1}^{n} \omega_i \phi(||x c_i||)$
- Neural network

• ...

Fluid-Structure-Interaction (FSI)

- To study fluid-structure interaction with high-fidelity analysis there are generally two approaches:
 - 1 way
 - 2 ways
 - Modal Superposition
- In this study, the focus is on the two-way method:
 - From the CFD analysis, the aerodynamic loads are calculated and exported;
 - The loads are imported into the FEM model and the displacements are estimated;
 - The displacements are used to deform the CFD mesh and have a more accurate estimate of the loads.
 - The workflow is iterated until forces and displacements converge

Digital twin development: SVD + ROM

- One of the best-known applications of SVD is Principal Component Analysis (PCA);
- Given a matrix A ∈ R m x n and given p = min(m, n), a singular value decomposition (SVD) of A is a factorization of the form: A = UΣ^tV
- $U = (u_1 \dots u_m) \in R \ m \ x \ m \ and \ V = (v_1 \dots v_n) \in R \ n \ x \ n \ are \ orthogonal \ and$ $\Sigma \in R \ m \ x \ n \ is (pseudo)diagonal \ with \ diagonal \ elements \ \sigma_1 \ge \dots \ge \sigma_p \ge 0$
- $\sigma_1, \ldots, \sigma_p$ are the singular values of A
- A can be rewritten as: A = $\sum_{i=1}^{k} \alpha_i U_i$, where k are the principal singular values
- Finally, to construct the ROM it is necessary to find a correlation between input parameters and mode weights, and several interpolation methods can be used (RBF, Polynomial/Gaussian Regression, neural networks)

Design baseline: ESDU 86002

Design And Optimization

tatic Pressure 7.63e+03

> 6.49e+03 5.34e+03 4.19e+03

> 3.04e+03

CFD Optimization

- Drag -32% ٠
- Outlet pressure +86% ٠

FEM Analysis: Mesh and parameters

FEM Analysis: Number of plies

Baseline:

- 24 Plies of 0.25 mm
- Lamination sequence: [45/-45/02/90/02/45/-45/02]s

Optimized number of plies:

- 4 Plies of 0.125 mm
- Lamination sequence: [0/90]s

Mass reduction: -92%

	Delta
Drag	+0.3 N
P_Out	+0.3%

Variation of CFD performances

Convergence of FSI workflow

FEM ROM: Commercial software

Input:

- 2 angle value Output:
- Displacements field

Ansys Twin Builder was used to identify the relationship between input parameters and mode weights

ROM Relative error < 5%

Exported as .fmu

Comparison of FEM (left) and ROM (right) displacements for a random point of the test set

FEM ROM: Matlab code

Input:

- 2 angle valueOutput:
- Displacements field

A neural network was trained to identify the relationship between input parameters and mode weights

ROM Relative error < 6%

Comparison of FEM (left) and ROM (right) displacements for a random point of the test set

CFD ROM

Input:

- 6 shape parameters
- Velocity
- Outlet massflow

Output:

• Pressure field

ROM Relative error < 6%

Optimization dashboard

- Physical parameters are set and the optimum is identified;
- Field quantities can also be evaluated in real time;
- Accurate and reliable;
- Understanding of the physics of the problem.

Results

FEM Optimization: Angle of plies

Baseline:

• Lamination sequence: [0/90]s

Optimized angle:

• Lamination sequence: [-90/0]s

Max Displacements reduction: -36%

	Max Displamets [mm]
Baseline	2.88
Optimized	1.83

Displacements baseline (above) and optimized (below)

Conclusions

- CFD optimization: Drag -32% ; P_out +86%
- Mass reduction: Mass -92%
- FEM optimization: Max_displ -36%
- ROM development: ROM Realtive Error < 6%
- The workflow presented enables improved fluid dynamic and structural performance.
- The extracted ROMs allow real-time evaluation of the quantities of interest and can be used to create an optimization dashboard or can be integrated with visualization tool

Thank You For Your Attention

A. Lopez, U. Cella, C. Groth, M. E. Biancolini

Università di Roma, Tor Vergata

AIAS2023 | 6-9 Settembre | Genova