

TESI DI LAUREA MAGISTRALE INGEGNERIA MECCANICA

INDEDINERIA MECOAMICA

Goal driven multi-objective shape optimization for conjugate heat transfer in an effusion cooling system of a combustion chamber, through a CFD-mesh-morphing based approach.

> *Relatore* Prof. Marco E. Biancolini

Correlatore Prof. G.E. Andrews (University of Leeds) Ing. A. Pranzitelli (University of Leeds) Laureando Walter Savastano Matr. 0185986

Effusion Cooling

Introduction

Experimental Apparatus

Solidworks Model

ANSYS ICEM: Structured mesh

Fluent Model

Validation: Mesh Sensibility

Refined Mesh (1mln cells)

Turbulence Model Sensibility

Standard k-e

Realizable k-e 1 Experimental data 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.025 0.045 0.065 0.085 0.105 0.125 mm

Overall effectiveness $\eta_{ov} = \frac{T_g - T_w}{T_g - T_c}$ $T_g = \text{Hot gas Temperature}$ $T_w = \text{Wall temperature}$ $T_C = \text{Cooling air}$ Temperature

Baseline results

Overall Effectiveness: Contour on the plate

0

Temperature profile on symmetry plane

Baseline results

Velocity vectors on symmetry plate

Flow separation at the exit of the holes

Tracer concentration on symmetry plane

RBF Morph Parametrization

iversità di Rom

Tor Vergata

RBF Morph Parametrization

RBF Morph Parametrization

Parametrization

Input

- Rotation
- Pitch in X
- Pitch in Y

Output $\left(\frac{T_g - T_w}{T_g - T_c}\right)$

- Overall effectiveness Average
- Overall effectiveness Min >0,4
- Overall effectiveness Max
- Adiab. effectiveness Average (at 0,2 mm from the plate)
- Adiab. Effectiveness Max (at 0,2 mm from the plate)

Design of Experiment

Input Output Injection Pitch in **Pitch in** Overall **Overall** Overall Adiabatic Adiabatic angle Y Effectiveness Effectiveness Effectiveness Effectiveness Effectiveness Х (deg) (mm) Min Max (mm) Average Average max 43° 18.8 19.5 0.408 0.468 0.616 0.243 0.356 90° 23.7 15.2 0.358 0.409 0.216 0.29 0.514 -51° 12.8 15.2 0.367 0.383 0.550 0.223 0.314 -43° 6.7 13.4 0.405 0.413 0.249 0.650 0.388 -78° 22.5 16.4 0.275 0.351 0.573 0.204 0.323 57° 10.3 18.8 0.369 0.416 0.548 0.220 0.310 -57° 21.3 11.6 0.284 0.351 0.557 0.210 0.319 -66° 17.6 17.6 0.424 0.445 0.643 0.258 0.382 -39° 7.9 17.0 0.381 0.3890.576 0.228 0.319 51° 9.1 15.8 0.279 0.360 0.209 0.308 0.546 -35° 12.8 14.00.285 0.366 0.654 0.213 0.354 35° 11.6 10.9 0.338 0.407 0.596 0.242 0.342 66° 16.4 18.2 0.327 0.411 0.245 0.382 0.640 39° 14.0 14.6 0.393 0.480 0.563 0.232 0.315 78° 18.8 19.5 0.344 0.363 0.557 0.220 0.332

Answer surfaces

Optimization parameter Overall effectiveness average = f (Input1, Input2)

Constraint parameter > 0,4 Overall effectiveness min = f (Input1, Input2)

Optimization **Candidate Points**

N°	Injection Angle (deg)	Pitch in x (mm)	Pirch in Y (mm)	Overall Effectiveness Min	Overall Effectiveness Average	Overall Effectiveness Max	Adiabatic Effectiveness Average	Adiabatic Effectiveness Max
BASE	90°	15,24	15,24	0.411	0.453	0.540	0.216	0.309
1	-32.7°	17.03	12.92	0.483	0.591	0.681	0.316	0.392
_								
2	-33,2°	18,31	12,90	0.482	0.563	0.652	0.304	0.383
3	-74,6	16,72	12,90	0.524	0.603	0.668	0.338	0.403

Improvement of 30% in • overall effectiveness

Improvement of 50% in • adiabatic effectiveness

- Candidate Point N°3 :
 - Overall Effectiveness higher
 - Lower Temperature
 - gradient along the plate Ad Effectiveness higher

Candidate Point N°2

Overall effectiveness on the Plate

Candidate Point N°1

Candidate Point N°3

 More homogeneous effectiveness

1 ×

- Higher minimum effectiveness

Velocity vectors on symmetry plane Candidate Point N°1 Candidate Point N°2

Candidate Point N°3

Smaller detachment and recirculation zone

Better Coverage

of the plate

Temperature profile on symmetry planeCandidate Point N°1Candidate Point N°2

Candidate Point N°3

Temperature gradient on the plate

Candidate Point N°1 Candidate Point N°2

Candidate Point N°3

Candidate Point N°3

Overall effectiveness as a function of cooling air mass flow (G)

Baseline —Optimized Geometry

Conclusions

- CFD numerical study of an effusion cooling system developed at University of Leeds
- Model validation matching experimental data obtained from:
 G E Andrews, A A Asere, M L Gupta and M C Mkpadi,
 "Effusion cooling: the influence of the number of holes"
 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 1990
- Shape optimization performed by means of Rbf Morph and Ansys Workbench suite
- Results analysis to get influence of the shape parameters on the effusion cooling effectiveness, improvement of 30%
- Found an optimal geometry reducing up to 10 times cooling air flow, without reducing effectiveness.

- W. Savastano, A. Pranzitelli, G. E. Andrews, M. E. Biancolini, D. B. Ingham, M. Pourkashanian,
- "Goal driven shape optimisation for conjugate heat transfer in an effusion cooling plate",

Asme Turbo Expo, Montreal, Québec 2015

Thank you for your attention

RelatoreProf. Marco E. Biancolini
biancolini@ing.uniroma2.itCorrelatoreProf. G.E. Andrews(University of Leeds)Ing. A. Pranzitelli(University of Leeds)

Laureando Walter Savastano Matr. 0185986 savastano.walter@gmail.com