

Tesi di Laurea in Ingegneria Aeronautica



#### Ottimizzazione delle caratteristiche aerodinamiche di un motoaliante mediante Mesh-Morphing

Relatore: Prof. Luca Marino

Correlatore: Ing. Emiliano Costa



Facoltà di Ingegneria Civile e Industriale

Daniela Sorani



## Obiettivi

Ottimizzazione dell'efficienza aerodinamica del motoaliante Taurus mediante modifiche di forma su fusoliera e raccordo ala-fusoliera, volte alla riduzione della separazione dello strato limite in prossimità della radice dell'ala.

# FLUENT(Ansys); Strumenti: • RBF-MORPH (Fluent); • WORKBENCH (Ansys)





## Specifiche







Daniela Sorani

4/15

## Sforzo di attrito a parete $\tau_W$



Daniela Sorani

5/15

#### SAPIENZA Analisi della baseline Coefficiente di pressione



Daniela Sorani



#### Mesh-morphing RBF-Morph

**RBF-Morph** permette di modificare una mesh interpolandone direttamente i nodi, senza ricreare la griglia di calcolo

#### 3 fasi:

- definizione del dominio e dei punti sorgente, dai quali far partire la modifica di forma;
- risoluzione del sistema RBF;
- mesh morphing della superficie e/o del volume;

$$\begin{cases} s_x(x) = \sum_{i=1}^N w_i^x \varphi \left( \|x - x_i\| \right) + c_1^x + c_2^x x + c_3^x y + c_4^x z \\ s_y(x) = \sum_{i=1}^N w_i^y \varphi \left( \|x - x_i\| \right) + c_1^y + c_2^y x + c_3^y y + c_4^y z \\ s_z(x) = \sum_{i=1}^N w_i^z \varphi \left( \|x - x_i\| \right) + c_1^z + c_2^z x + c_3^z y + c_4^z z \end{cases}$$



Le **RBFs** sono una classe di **funzioni di interpolazione**,utilizzate per "guidare" il morphing dei nodi applicando spostamenti predefiniti ai punti sorgente.

Il **campo di spostamenti** è definito una volta determinati wi e ci.

Daniela Sorani



Si riduce la sezione trasversale della fusoliera al LE e la si aumenta al TE.

Si utilizzano due cilindri che si muovono lungo la direzione dell'asse y e "trascinano" le due zone della fusoliera.



L'ampiezza delle due modifiche dipende dai **coefficienti di amplificazione P1** (LE) e **P2** (TE)

$$\Delta y = P_n \Delta y_0$$

$$\Delta y_{0LE} = 0.1 \ m$$

 $\Delta y_{0TE} = 0.01 \ m$ 

Facoltà di Ingegneria Civile e Industriale

Daniela Sorani



Si riduce la sezione trasversale della fusoliera al LE e la si aumenta al TE.

Si utilizzano due cilindri che si

> L'ampiezza delle due modifiche dipende dai coefficienti di amplificazione P1 (LE) e P2 (TE)

$$\Delta y = P_n \Delta y_0$$

$$\Delta y_{0LE} = 0.1 \ m$$

$$\Delta y_{0TE} = 0.01 \ m$$

Facoltà di Ingegneria Civile e Industriale

muovono lungo la direzione dell'asse y e "trascinano" le due zone della fusoliera.

Daniela Sorani



Si riduce la sezione trasversale della fusoliera al LE e la si aumenta al TE.



L'ampiezza delle due modifiche dipende dai **coefficienti di amplificazione P1** (LE) e **P2** (TE)

$$\Delta y = P_n \Delta y_0$$

$$\Delta y_{0LE} = 0.1 \ m$$

 $\Delta y_{0TE} = 0.01 \ m$ 

Facoltà di Ingegneria Civile e Industriale

Daniela Sorani



Si riduce la sezione trasversale della fusoliera al LE e la si aumenta al TE.

Si utilizzano due cilindri che si

> L'ampiezza delle due modifiche dipende dai coefficienti di amplificazione P1 (LE) e P2 (TE)

$$\Delta y = P_n \Delta y_0$$

$$\Delta y_{0LE} = 0.1 \ m$$

 $\Delta y_{0TE} = 0.01 \, m$ 

Facoltà di Ingegneria Civile e Industriale

muovono lungo la direzione dell'asse y e "trascinano" le due zone della fusoliera.

8/15

Daniela Sorani



#### DOE – Design of experiments

La tecnica statistica **DOE** prevede lo studio dell'influenza della combinazione di diversi fattori di input (Design points, **DP**) sull'output desiderato:

Si scelgono dei range di valori per lo spostamento dei due cilindri.

- Range di spostamento al TE =[-0.04 m; 0.05m], con verso positivo ad aumentare la sezione trasversale della fusoliera 
   P2 =[-4; 5].

| Name     | P1 - Fuselage-le | P2 - Fuselage-te | P5 - cd  | P6 - cl | P7 - Efficiency |
|----------|------------------|------------------|----------|---------|-----------------|
| Baseline | 0.0              | 0.0              | 0.081931 | 0.9952  | 12.147          |
| 1        | 0.41             | 0.05             | 0.071585 | 1.0434  | 14.576          |
| 10       | 0.05             | 3.65             | 0.078463 | 1.0087  | 12.856          |
| 2        | 0.95             | -3.55            | 0.065188 | 1.0793  | 16.557          |
| 3        | -0.31            | -1.75            | 0.082565 | 0.99706 | 12.076          |
| 4        | 0.77             | 1.85             | 0.063195 | 1.1342  | 17.948          |
| 5        | -0.13            | 0.95             | 0.082538 | 1.0004  | 12.12           |
| 6        | 1.31             | 2.75             | 0.063021 | 1.137   | 18.042          |
| 7        | 0.59             | 4.55             | 0.062731 | 1.1361  | 18.111          |
| 8        | 1.13             | -0.85            | 0.062388 | 1.1336  | 18.17           |
| 9        | 0.23             | -2.65            | 0.080457 | 1.0041  | 12.48           |

10 combinazioni di P1 e P2 all'interno di questi intervalli **> 10 DP** 

Dalla combinazione dei 10 DP viene generato un set di soluzioni DOE

Daniela Sorani

#### SAPIENZA Ottimizzazione (WB) Generazione delle superfici di risposta

10/15

Una superficie di risposta 3D che rappresenta l'andamento dell'efficienza al variare di P1 e P2 è ottenuta interpolando e/o approssimando le informazioni ottenute dai risultati per i 10 DP.

Avendo considerato due sole variabili (P1 e P2), l'analisi della superficie di risposta è sufficiente a comprendere entro quali valori far variare i due spostamenti dei cilindri per l'ottimizzazione dell'efficienza aerodinamica.



(P1=0.9; P2=4.7)

Daniela Sorani



Avviando un **ciclo di ottimizzazione**, mediante un algoritmo genetico, si estrapolano tre combinazioni di P1 e P2 candidate a fornire l'efficienza maggiore.

Vista la tipologia di superficie di risposta, i 3 candidanti rappresentano in realtà una sola combinazione di P1 e P2.

La modifica di forma ottima è data da:

P1 - Fuselage-le = 0.9 
$$\Delta y_{LE} = 0.09m$$
  
P2 - Fuselage-te = 4.7  $\Delta y_{TE} = 0.047m$   
Baseline Morphing  $C_L = 0.9952$   $C_L = 1.1279$   $\Delta C_L = +13.33\%$   
 $C_D = 0.0819$   $C_D = 0.0631$   $\Delta C_D = -22.95\%$   
 $E = 12.151$   $E = 17.864$   $\Delta E = +47.02\%$ 

Daniela Sorani

11/15

Facoltà di Ingegneria Civile e Industriale

Miglioramento delle

## **PIENZA** Risultati e confronti Sforzo d'attrito a parete $\tau_W$





La diminuzione del  $au_W$  lungo il dorso spostandosi verso la radice è meno rapida

Daniela Sorani

12/15

#### SAPIENZA NIVERSITÀ DI ROMA Risultati e confronti Coefficiente di pressione



Il Cp diminuisce sul dorso in prossimità del LE e in tutta la zona dove, nella baseline, se ne verificava un repentino aumento.

Proseguendo verso valle non è più presente una zona a Cp quasi costante.

Daniela Sorani

13/15



#### Polare aerodinamica e grafico C<sub>L</sub>-α







#### Daniela Sorani

14/15



## Conclusioni

- Utilità del metodo di ottimizzazione nel miglioramento delle caratteristiche aerodinamiche del velivolo
- •Sinergia nella combinazione Fluent RBF-Morph Workbench
- •Efficacia della modifica di forma nella riduzione della zona di separazione dello strato limite

## Sviluppi futuri

- Utilizzo di una mesh con un maggior numero di celle per rendere le simulazioni più precise
- •Generazione di una tabella di soluzioni DOE con un numero maggiore di Design Points
- Necessità di analisi strutturali e di stabilità per verificare l'applicabilità della modifica di forma





#### Grazie per l'attenzione







#### Taurus - Scheda tecnica

| Caratteristiche    | Valori                      | Prestazioni            | Valori           |  |
|--------------------|-----------------------------|------------------------|------------------|--|
| generali           |                             |                        |                  |  |
| Lunghezza          | 7.17 m                      | Velocità massima       | 56.94 m/s        |  |
| Altezza            | 1.41 m                      | Velocità di stallo     | 17.36 m/s        |  |
|                    |                             | (con flap)             |                  |  |
| Apertura alare b   | 15.2 m                      | Velocità di stallo     | 18.19 m/s        |  |
|                    |                             | pulito                 |                  |  |
| Superficie alare S | 12.33 <b>m</b> <sup>2</sup> | Velocità di            | 37.5 m/s         |  |
|                    |                             | manovra                |                  |  |
| Allungamento       | 18.6                        | Velocità di crociera   | 40.27 <i>m/s</i> |  |
| alare A            |                             | al 75%                 |                  |  |
| Superficie deriva  | 0.9 <b>m</b> <sup>2</sup>   |                        |                  |  |
| Superficie         | 1.36 <b>m</b> <sup>2</sup>  | profilo alare: ORL 170 |                  |  |
| stabilizzatore     |                             |                        |                  |  |
| Peso a vuoto       | 285 kg                      |                        |                  |  |
|                    |                             |                        |                  |  |
| MTOW               | 450 <i>kg</i>               |                        |                  |  |
|                    |                             |                        |                  |  |