

FACOLTA' DI INGEGNERIA

TESI DI LAUREA TRIENNALE IN INGEGNERIA MECCANICA

OTTIMIZZAZIONE DELLA TESTATA DI UN MOTORE MEDIANTE MESH MORPHING

RELATORE:

PROF. CORRADO GROTH

CORRELATORE:

DT. STEFANO PORZIANI

ANNO ACCADEMICO 2021-2022

CANDIDATO:

MATTEO MARRA

Introduzione

La tesi si pone l'obiettivo di ottimizzare la testata di un motore Diesel mediante tecniche di mesh morphing. L'attenzione si concentrerà sulla porzione della stessa inerente ad uno dei due cilindri centrali e l'obiettivo perseguito sarà quello di andare a ridurre le concentrazioni di tensione nelle zone relative al water jacket.

Le fasi di lavoro sono:

- Studio termo-strutturale mediante FEM
- Individuazione degli hotspot di tensione
- Ottimizzazione strutturale adoperando il Biological Growth Method (BGM)

La geometria è stato presa da GrabCAD, costruendo un modello high fidelity al fine di implementare un processo di ottimizzazione applicabile a casi reali. Lo studio infatti è stato compiuto basandosi su quanto fatto dalla Cummins per un Diesel 6 cilindri in linea.

GRABCAD

- Motore Diesel quattro cilindri in linea
- Cilindrata 2000 cm³, corsa 84 mm, alesaggio 87 mm
- 16 valvole, 4 iniettori, iniezione diretta
- lega di alluminio AlSi7MgCu0.5

Valutazione dei carichi strutturali

Pressione p_c agente sul cielo della testata

Pressione p_p agente sulla sede dei prigionieri

 Statution
 Support
 Support

Pressione sulle sedi delle valvole di aspirazione p_a e scarico p_s

Valore massimo raggiunto in camera pari a **70 bar**

$$F_p = p_c S_c = 23,893 N$$

 $p_p = \frac{F_p}{S_p} = 91,4 \text{ MPa}$

$$p_{v} = \frac{1}{\pi D_{m} b cos \alpha} \left(\frac{p_{g} \pi D^{2}_{max}}{4} + F_{m} + F_{i} \right)$$
$$p_{a} = \mathbf{40}, \mathbf{34} \mathbf{MPa} \qquad p_{s} = \mathbf{22}, \mathbf{85} \mathbf{MPa}$$

Valutazione degli scambi termici

Scambi termici convettivi:

- camera di combustione
- Water jacket ሩ
- Condotti di aspirazione 🖛
- Condotti di scarico

B: Steady-State Thermal Convection 6 Time: 1, s 20/01/2023 12:29

A Convection: 806,85 °C, 1700, W/m²·°C
B Convection 2: 806,85 °C, 794, W/m²·°C
C Convection 3: 806,85 °C, 530, W/m²·°C
D Convection 4: 90, °C, 1750, W/m²·°C
E Convection 5: 676,85 °C, 1390, W/m²·°C
F Convection 6: 54,85 °C, 1050, W/m²·°C

Alette di raffreddamento trascurate

Imposizione delle condizioni al contorno

Obiettivo: simulare le condizioni di vincolo in cui opera la testata

Vincoli applicati:

TOR VERGAT

- impedimento dello spostamento in direzione Y per le circonferenze di base dei fori dei prigionieri;
- impedimento dello spostamento in direzione Z per il punto del foro di iniezione situato vicino le sedi delle valvole di scarico;
- impedimento degli spostamenti in direzione X e Z per il punto del foro dell'iniettore situato nei pressi delle sedi delle valvole di aspirazione.

A Displacement
B Displacement 2
C Displacement 3

Finite Element Method (FEM)

Il FEM è utilizzato per:

- problemi stazionari per l'analisi delle tensioni;
- problemi agli autovalori per lo studio della stabilità e delle vibrazioni;
- problemi di propagazione per l'analisi sismica e dinamica.

Tre tipi di approccio:

- il metodo degli spostamenti;
- il metodo delle forze;
- il metodo misto.

Il metodo degli spostamenti prevede le seguenti fasi:

- 1. generazione della mesh;
- 2. definizione degli spostamenti dei punti nodali $\{\Delta\}^l$;
- 3. utilizzo delle "funzioni di spostamento";
- 4. determinazione di un vettore di forze, in equilibrio con le tensioni:

 $\{F\}^l = [K]^l \{\Delta\}^l$

5. creazione della matrice di rigidezza dell'intera struttura.

Workflow

Project Schematic

- 1. Realizzazione della geometria da studiare
- Definizione delle proprietà del 2. materiale da costruzione
- Realizzazione della mesh 3.
- Applicazione dei carichi termici 4.
- Ottenimento dello stato termico della 5. testata
- Applicazione dei carichi strutturali 6.
- Acquisizione dello stato tensionale 7.
- 8. Ottimizzazione strutturale

Creazione della mesh

Obiettivi:

- discretizzazione della testata;
- risoluzione delle equazioni sui nodi o nelle celle.

Caratteristiche:

- infittimento nelle zone di raccordo e nelle curvature;
- elementi parabolici;
- 2.361.723 nodi;
- 1.569.417 elementi;
- qualità compresa tra 0,8 e 1.

Analisi della distribuzione delle temperature

•

Si determinano:

- temperatura minima pari a 83,57 °*C*;
- temperatura massima pari a 388,17 °*C*;
- temperatura media pari a 166,66 °*C*.

Osservazione: il valore della conducibilità termica è stato assunto pari a $150 \frac{W}{m^{\circ}C}$ nel range di temperature compreso tra 140 °C e 170 °C.

Analisi delle tensioni ottenute: stato di stress complessivo

Stato di stress all'interno della testata caratterizzato da:

- valore massimo raggiunto nel cielo pari a 180 MPa;
- omogeneità della distribuzione delle sollecitazione;
- simmetria tensionale dovuta alla simmetria dei carichi applicati.

Osservazioni: le concentrazioni di tensione superano lo snervamento ma derivano dai vincoli imposti e dalla geometria in quei punti quindi non rappresentano pericoli strutturali.

Analisi delle tensioni ottenute: sede dell'iniettore

Valutazioni sullo stato di stress:

- tensione media sperimentata pari a 61 MPa;
- tensione minima di 4 MPa;
- tensione massima pari a 141 MPa;
- andamento speculare delle tensioni;
- lo stress ottenuto è una buona stima di quello reale.

Analisi delle tensioni ottenute: condotto di scarico

Valutazioni sullo stato di stress:

- tensione media complessiva pari a 68 MPa;
- tensione minima di 6 MPa;
- tensione massima pari a 344 MPa;
- andamento speculare delle tensioni in accordo con la simmetria dei carichi;
- lo stress ottenuto è una buona stima di quello.

La concentrazione di tensione supera il valore di rottura

Necessaria azione di intervento per preservare l'integrità strutturale

Analisi delle tensioni ottenute: condotto di aspirazione

Valutazioni sullo stato di stress:

- tensione media complessiva pari a 64 MPa;
- tensione minima di 1,4 MPa;
- tensione massima pari a 236 MPa;
- andamento speculare delle tensioni in accordo con la simmetria dei carichi;
- lo stress ottenuto è una buona stima di quello reale.

La concentrazione di tensione supera il valore di snervamento

Necessaria azione di intervento per evitare l'entrata in plasticità del materiale

Analisi delle tensioni ottenute: water jacket

Static Structural

1,9192e8

Jnit: Pa

Valutazioni sullo stato di stress:

- tensione media complessiva pari a 61 MPa; ٠
- tensione minima di 1,4 MPa;
- tensione massima registrata pari a 344 MPa;
- stress medio che non supera i 150 MPa;
- si ha a disposizione molto materiale non sfruttato;
- lo stress ottenuto è una buona stima di quello ٠ reale.

Ansys Type: Equivalent (von-Mises) Stress 2022 F Time: 1 s 29/01/2023 19:04 3.4432e8 Max 3.0622e8 2.6812e8 2,3002e8 1,5382e8 1,1572e8 7,7616e7 3,9515e7 1,4149e6 M stress massimo globale nei condotti di scarico

stress minimo globale nei condotti di aspirazione

Valutazione della convergenza della mesh

Obiettivo: analizzare la variazione delle tensioni e della temperatura al variare della mesh

Parametri della mesh:

- dimensione massima dell'elemento, nell'intervallo [0,06-0,11]m, con passo di iterazione pari a 0,005m;
- numero di nodi, da 2,948,800 a 2,074,500; variazione del 30%;
- numero di elementi, da 1,950,000 a 1,376,000;variazione del 30%.

Risultati ottenuti.

Grandezza analizzata	Valore minimo	Valore massimo	Variazione percentuale (%)
Stress nella sede dell'iniettore	140,71 MPa	143,09 MPa	1,7
Stress nel condotto di scarico	356,09 MPa	336,92 MPa	5,4
Stress nel condotto di aspirazione	241,23 MPa	234,02 MPa	3
Temperatura massima	388,04 °C	388,18 °C	0,04
Temperatura media	165,18 °C	167,59°C	1,43

Ottimizzazione strutturale mediante mesh morphing

Obiettivo: ottimizzare la struttura riducendo il picco delle tensioni

Biological Growth Method (BGM)

- Imita la natura per migliorare le parti strutturali;
- parametro di efficienza k_{eff} per quantificare lo sfruttamento del materiale

$$k_{eff} = \frac{1}{A_1 + A_2} \left(\frac{\int_{A_1} \sigma_t^{+} dA_1}{\sigma_{max}^{+}} + \frac{\int_{A_2} \sigma_t^{-} dA_2}{\sigma_{max}^{-}} \right)$$

RBF Mesh Morphing

- Non esiste alcuna dipendenza dalla mesh;
- interpolazione in uno spazio 3D con il sistema :

$$\begin{cases} s_x(x) = \sum_{i=0}^n \gamma_i^x \varphi(||x - x_i||) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ s_y(x) = \sum_{i=0}^n \gamma_i^y \varphi(||x - x_i||) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ s_z(x) = \sum_{i=0}^n \gamma_i^z \varphi(||x - x_i||) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{cases}$$

Modifica automatica delle superfici usando RBF e BGM

- Sfrutta le capacità del morphing della mesh RBF nell'esecuzione di ottimizzazioni di forma evolutiva;
- sposta i nodi della mesh secondo l'approccio BGM;
- per l'i-esimo nodo, lo spostamento S_i , normale alla superficie, è

$$S_i = \frac{\sigma_i - \sigma_{th}}{\sigma_{max} - \sigma_{min}} d$$

Stress/Strain type	Equation
von Mises stress Maximum principal stress Minimum principal stress Stress intensity Maximum shear stress Equivalent plastic strain	$\begin{split} \sigma_{e} &= \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}} \\ \sigma_{e} &= \max(\sigma_{1}, \sigma_{2}, \sigma_{3}) \\ \sigma_{e} &= \min(\sigma_{1}, \sigma_{2}, \sigma_{3}) \\ \sigma_{e} &= \max(\sigma_{1} - \sigma_{2} , \sigma_{2} - \sigma_{3} , \sigma_{3} - \sigma_{1}) \\ \sigma_{e} &= 0.5 \cdot (\max(\sigma_{1}, \sigma_{2}, \sigma_{3}) - \min(\sigma_{1}, \sigma_{2}, \sigma_{3})) \\ \varepsilon_{e} &= \frac{\sqrt{(\varepsilon_{1} - \varepsilon_{2})^{2} + (\varepsilon_{2} - \varepsilon_{3})^{2} + (\varepsilon_{3} - \varepsilon_{1})^{2}}}{4(1 + \nu')} \end{split}$

Stress e strain disponibili nell'ottimizzazione con il BGM

Ottimizzazione della sede dell'iniettore

- riduzione complessiva della tensione del **23%;**
- incremento di peso pari a 4,7 g

Ottimizzazione del condotto di scarico

- riduzione complessiva della tensione del **49%**;
- incremento di peso pari a 1,3 g

Ottimizzazione del condotto di aspirazione

- riduzione complessiva della tensione del **29,5%**;
- incremento di peso pari a **12,2** *g*

Risultati ottenuti

L'applicazione del BGM ha permesso di ottenere i risultati di seguito riportati:

Sezione ottimizzata	Threshold Value (MPa)	Max Surf Offset (m)	Tensione di snervamento (MPa)	Tensione massima DP0 (MPa)	Tensione massima DP Finale (MPa)	Riduzione percentuale (%)
Sede iniettore	80	0,0005	200	140,71	104,84	25,5
	0	0,0003	200	140,71	108,37	22,9
Condotti di scarico	58	0,001	200	344,32	175,31	49
Condotti di aspirazione	80	0,0005	200	236,36	196,46	16,9
	0	0,0005	200	236,36	166,72	29,5

Conclusioni

In conclusione, quanto svolto nella tesi ha dato un esempio applicativo del BGM improntato all'ottimizzazione della testata di un motore.

- Senza dover procedere alla realizzazione di una mesh, con l'ausilio di RBF-Morph è stato possibile modificare la geometria di partenza
- È stato compiuto un miglioramento termo-strutturale del componente sotto esame, diminuendo le concentrazioni di tensione
- Ciò ha consentito di dimostrare l'efficacia del mesh morphing, grazie al quale, in fase di progettazione è possibile ridurre i tempi di lavoro

Il processo di ottimizzazione qui proposto può essere incluso nel flusso di lavoro della progettazione di componenti, garantendo risultati soddisfacenti in differenti campi di impiego

GRAZIE PER L'ATTENZIONE!

