

IMPACT OF IMAGE SEGMENTATION VARIABILITY ON HEMODYNAMIC PREDICTIONS OF FLOW QUANTITIES IN AAA

Antonio Martínez^{1,4}, Daan Jongerius², Marc Horner³, Leonardo Geronzi¹, Eirini Kardampiki¹, Marco Evangelos Biancolini¹

1. University of Rome "Tor Vergata", Italy;

2. Eindhoven University of Technology, Netherlands;

3. Ansys, Inc, Evanston, IL, USA; 4. Ansys, Inc, Lyon, France

Background

In order to incorporate computational models into the clinical industry, a thorough understanding on the uncertainty introduced by the model inputs is mandatory.

Background

- In order to incorporate computational models into the clinical industry, a thorough understanding on the uncertainty introduced by the model inputs is mandatory.
- Introducing an in-silico product on the market requires FDA or EU MDR approval, which is obtained after a verification and validation procedure. This process requires stablishing tolerances and deviations margins on the software's output.

Data acquisition

Spatial resolution Temporal resolution Artifacts Noise

Data acquisition

Spatial resolution Temporal resolution Artifacts Noise

Data preprocessing

Segmentation Smoothing Filtering

Data acquisition

Spatial resolution Temporal resolution Artifacts Noise

Data preprocessing

Segmentation Smoothing Filtering

Model setup

Turbulence model Material models Boundary conditions CFD-FEM-FSI

Data acquisition

Spatial resolution Temporal resolution Artifacts Noise

Data preprocessing

Segmentation Smoothing Filtering

Model setup

Turbulence model Material models Boundary conditions CFD-FEM-FSI

/ Workflow

- CT Scan segmented by 15 independent groups.
- Quantification of the geometric variability.
- Run steady and transient CFD analyses.
- Quantification of the variability on hemodynamic variables.

Voxel size = [0.824, 0.824, 2.5] mm

Voxel size = [0.824, 0.824, **2.5**] mm

Isotopological mesh

Isotopological mesh

Isotopological mesh

Isotopological mesh

- Maximum deviation
- Standard deviation
- Statistical Shape Model

Geometric Variability: Maximum Deviation

Geometric Variability: Standard Deviation

Geometric Variability: Standard Deviation XY

Geometric Variability: Standard Deviation Z

Geometric Variability: Standard Deviation Z

▶ With 5 modes we capture 95.7% of the variance

Hemodynamic Variability: Steady

Hemodynamic Variability: Steady

Analysis of WSS, pressure drop, and outlet velocity

Setup:

- 3 steady state case: 50, 100 and 150 ml/s
- Outlet pressure = 80 mmHg
- Laminar
- Carreau non-newtonian fluid

(ρ = 1056 kg/m³, μ_{∞} =0.0035 Pa·s, μ_{0} =0.056 Pa·s, λ =3.313 s, n=0.3568)

Mass flow inlet

Hemodynamic Variability: Steady 50 ml/s

Hemodynamic Variability: Steady 50 ml/s

Hemodynamic Variability: Steady 100 ml/s

Hemodynamic Variability: Steady 100 ml/s

Hemodynamic Variability: Steady 150 ml/s

Hemodynamic Variability: Steady 150 ml/s

Analysis of TAWSS, OSI, pressure drop, and outlet flux. Setup:

- Inlet: imposed mass flow profile
- Outlet pressure constant = 80 mmHg
- Laminar
- Carreau non-newtonian fluid:
 (ρ = 1056 kg/m³,μ_∞ =0.0035 Pa·s, μ₀ =0.056 Pa·s, λ =3.313 s, n=0.3568)
- 4 cardiac cycles

$$\mathsf{TAWSS} = \frac{1}{T} \int_0^T |\mathsf{WSS}| dt$$

$$OSI = 0.5 \left(1 - \frac{\left| \int_0^T WSSdt \right|}{\int_0^T |WSS|dt} \right)$$

(1)

2

(1)

2

(1)

2

Future Works

- Combined analysis of volume segmentation variability and MRI flux variability
- Effect of smoothing
- Comparision of segmentation methods: manual, semi-automatic, automatic
- ► FSI

Acknowledgments

Daan Jongerius Leonardo Geronzi Eirini Kardampiki Marc Horner Marco E. Biancolini

Antonio Martinez Pascual antonio.martinez@uniroma2.it

MeDiTaTe Project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement 859836

Thank you!