

Università di Pisa

Corso di Laurea Magistrale in Ingegneria Biomedica

Development of a fast high fidelity FSI workflow to simulate polymeric aortic valves: a RBF mesh morphing study

Relatori: Ing. Simona Celi Prof. Marco Evangelos Biancolini Ing. Emanuele Gasparotti Candidato: Leonardo Geronzi

A. A. 2018/2019

Introduction

2018: cardiovascular diseases are the first cause of death in the world [1]

 \rightarrow Aortic Stenosis: shrinkage of the aortic orifice

Polymeric-Prosthetic Heart Valves (P-PHVs)

- Crimpable
- Less inclined to coagulation problem
- Customizable
- Easy to be produced
- Cheap

Introduction

FDA U.S. FOOD & DRUG

[2]

← Home / Medical Devices / Device Advice: Comprehensive Regulatory Assistance / Reprocessing of Reusable Medical Devices: Information for Manufacturers / Computational Modeling: A Proposed Simulation Tool for Designing Reusable Medical Devices for Reprocessing

4SME

[3]

| The American Society of Mechanical Engineers

V V 40 - 2018

Computational Modeling: A Proposed Simulation Tool for Designing Reusable Medical Devices for Reprocessing

Learning 8

Codes & Standards > Find Codes & Standard > V V 40 Assessing Credibility of Compu.

Computational Modeling through

Assessing Credibility of

Verification and Validation: Application to Medical Devices

Publications 8

Currently, FDA² and ASME³ are forcing on the advancement and widespread adoption of new approaches based on numerical simulation which require better computational tools that are fast, accessible and individually adaptable

- Maximum displacement ٠
- Maximum Geometric Orifice Area (GOA_{max})
- Maximum Coaptation Area (CA_{max})

Fluid-Structure Interaction (FSI) analysis

Output parameters:

Wall Shear Stress (WSS)

$$_{w} = \mu \left(\frac{\partial u}{\partial y}\right)_{y=0} = 32\mu \frac{Q}{\pi d^{3}}$$

Volumetric Flow Rate (VFR)

High computational time to solve simulations

[4] Pfensig et al, Biomedical Engineering. 3(2):631-634, 2017

[5] Cao et al., Computer methods in biomechanics and biomedical engineering. 19(6):603–613, 2016.

Aim of this work

Development of a novel numerical approach able to reduce computational time with *fast-high fidelity*

Coupling between FSI and mesh morphing techniques

Generation of a new upgradable and adaptable parametric model of the aortic valve

Influence of parameters with respect to output values

[6] Capellini et al. Journal of biomechanical engineering. 140(11): 110007, 2018.

Method for changing the shape of a surface, preserving its topology: nodal positions are only updated

Based on Radial Basis Functions (RBF)

To interpolate in the space a scalar function s(x) defined at discrete points, giving the exact values at original points

 $s(x) = \sum_{i=1}^{N} \gamma_{i} \varphi \left(\|x - x_{s_{i}}\| \right) + h(x)$ $h(x) = \beta_{1} + \beta_{2}x + \beta_{3}y + \beta_{4}z$ JD-space $\begin{cases} s_{x}(x) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi \left(\|x - x_{s_{i}}\| \right) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z$ $s_{y}(x) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi \left(\|x - x_{s_{i}}\| \right) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z$ $s_{z}(x) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi \left(\|x - x_{s_{i}}\| \right) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z$

 γ_i : weights of the model $\varphi(\cdot)$: RBF x: generic position x_{s_i} : source point h(x): polynomial term

Pointsssc

Parametric model

Identification of a surgical candidate

Design parameters

	Parameter	Meaning	Value
FIXED* -	r _e	External radius of the circular ring	Fixed: 12 mm
	r _i	Internal radius of the circular ring	Fixed: 11 mm
	θ	Revolution angle of the leaflets	Fixed: 120°
	s _l	Thickness of the leaflets	Fixed: 0,3 mm
	h_{v}	Height of the whole valve	Fixed: 20 mm
	e _x	Ellipse-x parameter for the entrainment	Parametrized
	e _y	Ellipse-y parameter for the entrainment	Parametrized
	r_l	Radius of the internal arc which defines the upper surface of the leaflet	Parametrized
	g	Semi-gap between one leaflet and the other one in proximity to the ring	Parametrized
	r _{junct-est}	Junction radius between the external face of the leaflet and the ring	Parametrized
	r _{junct-int}	Junction radius between the internal face of the leaflet and the ring	Parametrized
	h _{cone-cut}	Maximum internal cutting height to generate Lunula angle of the valve	Parametrized

*@ patient specific level

Parametric model

6

Identification of a surgical candidate

Design parameters

1000	Parameter	Meaning	Value
FIXED* -	r _e	External radius of the circular ring	Fixed: 12 mm
	r _i	Internal radius of the circular ring	Fixed: 11 mm
	θ	Revolution angle of the leaflets	Fixed: 120°
	s _l	Thickness of the leaflets	Fixed: 0,3 mm
	h_{v}	Height of the whole valve	Fixed: 20 mm
	e _x	Ellipse-x parameter for the entrainment	Parametrized
	e _y	Ellipse-y parameter for the entrainment	Parametrized
	r_l	Radius of the internal arc which defines the upper surface of the leaflet	Parametrized
100	g	Semi-gap between one leaflet and the other one in proximity to the ring	Parametrized
	r _{junct-est}	Junction radius between the external face of the leaflet and the ring	Parametrized
	r _{junct-int}	Junction radius between the internal face of the leaflet and the ring	Parametrized
	h _{cone-cut}	Maximum internal cutting height to generate Lunula angle of the valve	Parametrized

*@ patient specific level

M&M – Structural simulations

ANSYS Mechanical

- Material properties: isotropic linear elastic (E= 3 MPa, v= 0.4)
- Element type: tetrahedral (from 237533 to 368730)
- Boundary condition: bottom surface of the circular ring fixed in displacement

Opening

- 15 opening simulations (O1-O15)
- Transvalvular <u>systolic pressure</u>

Closing

- 15 closing simulations (C1-C15)
- Transvalvular <u>diastolic pressure</u>

• From structural analysis: Parametric set 15

Two inlet boundary conditions

Fluid Setting:

- Newtonian fluid (µ= 4 cP) Viscous-Laminar
- ρ= 1000 kg/m³
- Number of elements 1.5 million
- Time step= 1e-5 s
- Simulation time= 14 ms

Structural Setting:

- Number of elements 0.5 million
- Transvalvular systolic pressure @ ventricular side

Università di Roma

New morphing procedure

Step 1: from P2 to P0

- To reach initial position
- Saving of the mesh with a deformation already in place
- Initialization of the flow

Step 2: from Poto Po

• To morph all the opening of the valve

Università di Roma

New morphing procedure

Step 1: from P2 to P0

- To reach initial position
- Saving of the mesh with a deformation already in place
- Initialization of the flow

Step 2: from Poto Po

• To morph all the opening of the valve

Scheme program

Università di Roma

Complete opening simulation

Fluid Setting:

- Newtonian fluid (μ= 4 cP) Viscous-Laminar
- ρ= 1000 kg/m³
- Number of elements 0.9 million
- Time step= 5e-5 s
- Simulation time: 110 ms

Structural Setting:

- Number of elements 0.5 million
- Transvalvular systolic pressure @ ventricular side

Results – Structural simulations

Opening O₁₅

- Maximum eq. von-Mises stress: 1.05 MPa
- Maximum eq. strain: 0.344
- Maximum displacement: 8.74 mm
- GOA_{max}: 363.6 mm² [7]

Results – Structural simulations

Results – Pressure inlet FSI

CL

Results – Pressure inlet FSI

Results – Velocity inlet FSI

CL

Results – Velocity inlet FSI

Conclusions

- High fidelity workflow to solve FSI simulations faster than 15 times in comparison to standard remeshing procedures with similar results
- Based on a parametric patient-specific heart valve design
- Output values consistent with State of the Art

Future developments

- Implementation of a 2-Way FSI (remeshing and morphing)
- Closing FSI simulation

Towards a complete cardiac cycle...

Thank you for the attention