

Dynamic response of the VEGA C launch vehicle subjected to wind effect on ground

Fabio PAGLIA , Marta COLELLA

Ubaldo CELLA

Marco E. BIANCOLINI

Outline

- ► The specific FSI challenge
- Current and innovative solutions
 - Semiempirical approach valid for structures with circular sections
 - ► Numerical modal Fluid-Structure Interaction (FSI)
- ► Theoretical background of modal FSI based on RBF mesh morphing
- ► Details about the numerical framework
- ► Results: comparison of the two methods
- Conclusions

The wind effect on ground

- ➤ This study addresses the dynamic response of the launcher VEGA C subjected to wind loads on ground.
- The objective is to evaluate the risks related to the generation of Vortex Induced Vibration (VIV) mechanisms that interact with the modal properties of the structures.
- ► The KPIs are the dynamic contribution of moments acting on the base and the deflection of the nose tip.

Current and innovative solutions

- An internal AVIO code has been used to compute the dynamic response over a structure with a circular cross section subject to wind loads considering
 - ► The broad band dynamic response is calculated by linear random dynamics in the frequency domain.
 - ➤ The narrow band dynamic response is calculated by linear deterministic dynamics in the time domain.

- ▶ Detailed high fidelity analysis, in which the fluid-structure interaction is taken into account by means of FEM and CFD simulations.
- The numerical FSI approach adopted is based on structural modes embedding.
- ► High fidelity results are intended to assess the safety of the current semianalytical and explore possible design improvement margins

eucass 2025

11th European Conference for AeroSpace Sciences

Theoretical background of modal FSI based on RBF mesh morphing

- ► Fluid-Structure Interaction (FSI), in most engineering applications, cannot be neglected.
- ► CFD analysts → boundaries rigid, verification of the aeroelastic performance to a post design phase
- ► Structural analysts → fluid as constant pressure on the walls
- ► Several techniques in literature, each one with pros and cons
- Mesh morphing technologies are a powerful link between CFD and CSM

Modal superposition: overview

- Structural modes, and related frequency signature, represent the basic nature of the dynamic behaviour of a structure
- ► FSI with modal approach: simplified environment for static and dynamic aeroelastic mechanisms
- ► Limited to linear structural problems
- ► CFD is made flexible importing modes and frequencies, NO data exchange
- ► CFD mesh deformation required: RBF Mesh morphing

Radial Basis Functions

- ► RBF are at the core of the RBF Morph software family, integrated in ANSYS Workbench, Fluent and available standalone with the rbfCAE platform
- ▶ RBFs are a mathematical tool capable to **interpolate** at a generic point in the space a function **known** in a discrete set of points (**source points**)

radial basis polynomial

$$S(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i \varphi(\|\mathbf{x} - \mathbf{x}_{\mathbf{k}_i}\|) + h(\mathbf{x})$$

distance from the i-th source point

Radial Basis Functions

▶ If evaluated at the source points, the interpolating function gives exactly the input values:

$$s(\mathbf{x}_{k_i}) = g_i$$

$$h(\mathbf{x}_{k_i}) = 0$$

$$1 \le i \le N$$

▶ The RBF problem is associated to the solution of the linear system:

$$\begin{bmatrix} \mathbf{M} & \mathbf{P} \\ \mathbf{P}^{\mathsf{T}} & 0 \end{bmatrix} \begin{pmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{g} \\ 0 \end{pmatrix} \qquad M_{ij} = \varphi \begin{pmatrix} \boldsymbol{x}_{k_i} - \boldsymbol{x}_{k_j} \end{pmatrix} \qquad 1 \leq i, j \leq N \qquad \mathbf{P} = \begin{bmatrix} 1 & \boldsymbol{x}_{k_1} & \boldsymbol{y}_{k_1} & \boldsymbol{z}_{k_1} \\ 1 & \boldsymbol{x}_{k_2} & \boldsymbol{y}_{k_2} & \boldsymbol{z}_{k_2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \boldsymbol{x}_{k_N} & \boldsymbol{y}_{k_N} & \boldsymbol{z}_{k_N} \end{bmatrix}$$

$$1 \le i, j \le N$$

$$\mathbf{P} = \begin{vmatrix} 1 & x_{k_1} & y_{k_1} & z_{k_1} \\ 1 & x_{k_2} & y_{k_2} & z_{k_2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{k_N} & y_{k_N} & z_{k_N} \end{vmatrix}$$

Radial Basis Functions

▶ Once solved the RBF problem, each displacement component is interpolated:

$$\begin{cases} s_{x}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi(\mathbf{x} - \mathbf{x}_{k_{i}}) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s_{y}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi(\mathbf{x} - \mathbf{x}_{k_{i}}) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ s_{z}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi(\mathbf{x} - \mathbf{x}_{k_{i}}) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{cases}$$

RBF	φ(r)	RBF	φ(r)
Spline type (Rn)	r ⁿ , n odd	Inverse multi- quadric (IMQ)	$\frac{1}{\sqrt{1+r^2}}$
Thin plate spline	r ⁿ log(r) n even	Inverse quadratic (IQ)	$\frac{1}{1+r^2}$
Multi-quadric (MQ)	$\sqrt{1+r^2}$	Gaussian (GS)	e^{-r^2}

Parametric mesh formulation

► Each node position of the volume mesh can be computed using its original position as input:

$$x_{node_{new}} = x_{node} + \begin{bmatrix} s_x(x_{node}) \\ s_y(x_{node}) \\ s_z(x_{node}) \end{bmatrix}$$

Modal theory is linear, no need to use the costly RBF formula each mesh update. The following linear combination is used:

$$X_{CFD} = X_{CFD_0} + \sum_{m=1}^{n} \eta_m \Delta u_m$$

Modal superposition – steady FSI

▶ Modes and frequencies of a structure can be obtained solving the eigenvalue problem:

$$Ku = \omega^2 Mu$$

Orthogonality of modes and low pass behaviour simplify the problem. Mass normalization further simplifies the framework:

$$\Delta \boldsymbol{u}_m^T \boldsymbol{M} \Delta \boldsymbol{u}_m = 1$$

$$\Delta u_m^T K \Delta u_m = \omega_m^2$$

$$\Delta u_m^T M \Delta u_m = 1$$
 $\Delta u_m^T K \Delta u_m = \omega_m^2$ $u = \sum_{m=1}^n \Delta u_m \, \eta_m = \Delta u \, \eta$

$$\ddot{\eta}_m + \omega_m^2 \eta_m = F_m \qquad m = 1, 2, ..., n$$

$$m = 1, 2, ..., n$$

$$\omega_m^2 \eta_m = F_m$$

Modal superposition – unsteady FSI

- Equation of motion can be employed with finite differences
- Duhamel integral can be used to calculate modal coordinates

$$\eta(t) = e^{-\zeta \omega_n t} \left[\eta_0 \cos(\omega_d t) + \frac{\dot{\eta}_0 + \zeta \omega_n \eta_0}{\omega_d} \sin(\omega_d t) \right] + e^{-\zeta \omega_n t} \left\{ \frac{1}{m \omega_d} \int_0^t e^{-\frac{b(t-\tau)}{2m}} f(\tau) \sin[\omega_d (t-\tau)] dx \right\}$$

▶ For a generic numerical analysis, if the load is constant for each timestep, the Duhamel integral can be written as:

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

$$\eta(t + \Delta t) = e^{-\zeta \omega_n \Delta t} \left[\eta(t) \cos(\omega_d \Delta t) + \frac{\dot{\eta}(t) + \zeta \omega_n \eta(t)}{\omega_d} \sin(\omega_d \Delta t) \right] + e^{-\zeta \omega_n \Delta t} \left\{ \frac{F(t)}{\omega_d} \left[\frac{4\omega_d}{\zeta^2 \omega_n^2 + 4\omega_d^2} - e^{-\zeta \omega_n \Delta t} \frac{2\zeta \omega_n \sin(\omega_d \Delta t) + 4\omega_d \cos(\omega_d \Delta t)}{\zeta^2 \omega_n^2 + 4\omega_d^2} \right] \right\}$$

Modal superposition workflow

- No interpolation required, no data exchange required, modes are embedded as pre-processing
- Steady / unsteady FSI, FSI with prescribed motion
- How many modes to employ? Modal truncation error: modal basis qualification

NACA0009 Hydrofoil test case

Objective is to find lock-in and lock-off frequencies in water

https://doi.org/10.1016/j.prostr.2017.12.042

NACA0009 Hydrofoil test case

eucass 2025

11th European Conference for AeroSpace Sciences

Vortex shedding

CROSS FLOW INDUCED VIBRATION

https://youtu.be/A0WPDyhlr8Q

Vortex shedding

CFD model

- ► The CFD solver Ansys Fluent is adopted
- ► The grid has been refined to capture the unsteady flow conditions according to URANS
- ► Mesh motion is enabled during the CFD run according to the embedded structural modes

FEA model

► The FEA solver MSC Nastran is adopted

Mode	Frequency/fK _{min1}	
1st bending	1.43	
2 nd bending	10.74	
3 rd bending	23.70	

- Eigenmodes are computed on the full model
- Modal results are extracted as grid displacements for the nodes at the wetted surface
- The first three modes are considered for this study (bending, bending, mixed torsion-bending)
- Constraints are represented by the ground connection

eucass 2025

11th European Conference for AeroSpace Sciences

FSI simulation

- ► For the CFD simulation, an inlet velocity profile, constant in time but changing with altitude, has been considered.
- The profile takes into account gust effects, which are also modelled as function of the altitude.
- ► The amplitude of the vibration at the tip and the constraint bending moment at the ground are collected

Results - in house code

	K_{min}	K_{max}
1st mode	1.0	1.3
2 nd mode	10.8	10.9
3 rd mode	25.7	25.8

Madal - Madal - II - Madal - III

	min				
	$V_{m35} = V_{m35p1}$	$V_{m35} = V_{m35p2}$	$V_{m35} = V_{m35p3}$	$V_{m35} = V_{m35p4}$ Peak (mode I)	$V_{m35} = V_{m35p5}$ Peak (mode II)
Tip displacement (m)	1.00	1.00	1.86	2.65	0.99
Base moment (Nm)	1.42	1.00	2.15	3.20	1.33

	K_{max}				
	$V_{m35} = V_{m35p1}$	$V_{m35} = V_{m35p2}$	$V_{m35} = V_{m35p3}$	$V_{m35} = V_{m35p4}$ Peak (mode I)	$V_{m35} = V_{m35p5}$ Peak (mode II)
Tip displacement (m)	0.68	1.00	1.86	2.57	0.61
Base moment (Nm)	1.58	1.00	2.11	3.05	0.79

Results - FSI high fidelity

- ► The in house tool gives a base moment and a tip displacement that are 46.78% and 55.35% higher than the ones obtained with the FSI analysis.
- ► An approximation of the dynamic contribute of the base moment can be obtained considering the LV as a single beam with an extremity clamped to the ground:

$$M_b(d_{tip}) = K_\theta \theta \cong \frac{K_\theta}{L} d_{tip}$$

	Mean	Max	Min
DX	0.000	0.000	0.000
DY	-0.063	0.295	-0.445
DZ	0.008	0.139	-0.129
Magnitude	0.101	0.447	0.001

	ε (%) in house code (base moment)	ε (%) in house code (displacement)
VEGA C (in house code)	0	0
VEGA C (RBF Morph)	46.78	55.35

Conclusions

- ► The base moment increases significantly both for 1st and 2nd mode with respect to the stiffness increase; for 3rd mode the base moment shows very low values.
- ▶ The highest tip displacements are achieved for the 1st mode.
- The total bending moment at the base of the LV evaluated using K_{min} and K_{max} are lower than the maximum dimensioning base moments for Stand-by on Launch Pad Load Case; therefore it is possible to define the following range of ground global rotational stiffness: 1·10⁸ Nm/rad<K<2·10⁸ Nm/rad;

Conclusions

- ► In order to check the results obtained with the in house tool, a more detailed analysis, in which the fluid-structure interaction is taken into account, has been performed by means of FEM and CFD simulations, using RBF Morph.
- ► The analysis led to values of tip displacement and base momentum (evaluated with a simplified formula) that are half of the ones obtained with the in house tool.

Thank you!

biancolini@ing.uniroma2.it

www.linkedin.com/in/marcobiancolini/

youtube.com/user/RbfMorph

www.rbflab.eu

