





### A characterization of the vertebral body of L1 vertebra's mechanical properties through Statistical Shape and Appearance Modelling

**Candidate:** Francesco Pais **Supervisor:** Prof. M. E. Biancolini

#### Assistant supervisor:

Dr. M. Sensale



### Spinal disorders: a worldwide issue

#### Wide range of deseases

- Back pain
- Disk degeneration
- Fractures

- Osteoporosis
- Tumours
- Scoliosis

New techniques for surgeries





8

3

# Theory and methods

#### Finite Element Method (FEM)

- Numerical mathematic technique .
- Mesh: discretization of continuous bodies
- Mesh morphing

A method for changing the shape of a meshed surface while preserving the topology







### Theory and methods

### **Principal Component Analysis (PCA)**



New Reference System: Principal Components (PCs)

Each measurement can be expressed by the linear combination of the main modes of variation

PCA aims to represent the dataset in a smaller size space with a diagonal covariance matrix







### Theory and methods

### **Statistical Shape and Appearance Modelling**

Training dataset

Statistical Shape Model

Mean shape extraction from a quantity of modes of variance from the training dataset



Statistical Appearance Model

Distribution of material density of the specimen throughout the volume

- Pixels/Voxels intensities
- Density correlated to gray values





### Data collection

- Sixteen Computed Tomography (CT) scans of lumbar vertebrae L1
  - Mean shape (reference) extraction with SSM



Reference mesh



## Meshing & Morphing

#### Mesh generation

- Element size: 2 mm
- Element order: quadratic
- No adaptive sizing





*RBF Morphing for isotopologic meshes* 



## Mechanical properties mapping

#### 1) Allignment to CT Scan

Horn's method: rotational matrix and translational vector applied to nodal coordinates





#### 2) Mechanical properties mapping

A-priori densitometric calibration supposed

$$\rho_{QCT} = \rho_{app} \times 0.6 \frac{g}{cm^3}$$

Young's modulus & Poisson's ratio

#### Outcome:

Volumetric mesh where each element is characterized by its mechanical properties



### Statistical Appearance Model & PCA





A characterization of the vertebral body of L1 vertebra's mechanical properties through Statistical Shape and Appearance Modelling



### Leave One Out Validation

Iterative method in which a patient is removed from the dataset, PCA is performed on the remaining 15 and the one taken out is represented as a linear combination of the main modes found with the analysis



A characterization of the vertebral body of L1 vertebra's mechanical properties through Statistical Shape and Appearance Modelling



### Limitations

#### 1) Densitometric calibration

High variation of BMD between different scanners in case of lack of an appropriate calibration

#### 2) Number of patients

Sample's size is not enough to represent the great anatomical variability among humans

#### 3) Elements' relative position

No control of compliance with the retention of the relative position between elements



### Limitations

#### 4) Mesh Morphing

Interpolation error due to:

- Remeshing made by ٠ **Ansys Mechanical**
- Different morphing algorithms ٠



Alligned



### Conclusions

- ✓ Morphing and volumetric meshes exportation
- ✓ Allignment to CT Scans
- ✓ Mechanical properties mapping
- ✓ Creation of a SAM of the L1 vertebral body
- ✓ Validation of the statistical model
- ✓ Mean errors acceptable, but max errors too high due to limitations



- Overcoming all the limitations explained above, one can obtain a more accurate SAM of the L1 vertebral body and extend the model to the entire vertebra
- Performing the analysis necessary for the planning of surgical operations or for the design of patient-specific devices

# Thank you for your attention!