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Abstract. In this paper a fast and efficient mesh morphing based technique to perform FSI 

analyses for aeroelastic design and optimization applications is presented. The procedure is 

based on the finite volume CFD solver (OpenFOAM® and SU2) coupled with the RBF 

Morph™ tool capable of deforming the surface and volume mesh of the computational do-

main according to the mode superposition method. Structural vibration modes of the geome-

try of interest are calculated in a pre-processing stage by means of a FEM solver and later 

imported into the RBF Morph™ tool to create a set of individual basic deformations. Aerody-

namic loads calculated with a CFD solver are then projected onto the accounted structural 

modes to get modal loads and modal coordinates which are applied to the computational 

model in order to obtain the deformed configuration. An FSI cycle incorporating a CFD 

simulation and morphing of its mesh can be iteratively repeated upon convergence to the final 

deformed shape. Since the modal parameterization and the mesh calculation have to be pre-

pared only once per FSI analysis, its computation time is drastically reduced compared to a 

standard two-way coupling method in which a structural analysis has to be done at each cy-

cle. Present procedure was applied to two geometries, HIRENASD fuselage-wing geometry 

for the purpose of testing the procedure and a Pipistrel’s electric aircraft propeller for the 

purpose of optimization of its shape. By utilizing a DoE and a response surface method an 

increase of four percent of propeller efficiency was obtained by converging to a most favour-

able propeller pitch and twist configuration incorporating also FSI deformation. The above-

mentioned procedure was developed in the framework of the EU-funded RBF4AERO project 

(Grant Agreement No: 605396) and is available through the RBF4AERO platform. 
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1 INTRODUCTION  

An increasing demand for a faster design phase, optimized final product and reduction of 

the cost of production in today’s world requires a constant development of high fidelity com-

puter-aided engineering (CAE) tools and embedded numerical methods. Multidisciplinary 

numerical optimization procedures, where multiple physical phenomena are treated at the 

same time, are therefore desired because they let the engineers to determine their combined 

effect with a single analysis. 

Fluid-structure interaction (FSI) is an example of such multi-physics phenomena where an 

interaction of a surrounding or internal fluid flow with the movable or deformable structures 

occurs [1]. FSI is in particular important in aeronautical design, since the safety issue is of the 

most important concern. All aerodynamic surfaces deform to some extend under aerodynamic 

forces. Putting aside large scale deformations that cause a malfunction of an airplane, even 

smaller deformations can cause the airplane to fly at non-optimal configuration. These defor-

mations therefore shouldn’t be neglected during the design phase. 

In general, all FSI approaches can be grouped according to their governing equations onto 

monolithic approaches (equations governing the flow and the displacement of the structure 

are coupled and solved simultaneously) and partitioned approaches (equations are solved 

separately with two distinct solvers), and according to the treatment of the meshes onto 

matching and non-matching mesh approaches [2]. For a strong interaction between the fluid 

and the structure monolithic approaches should be used [3], whereas in cases when the inter-

action is week a simpler partitioned approach, with a typical two-way approach example [4], 

can be used. In order to tackle FSI problems of small deformations the FSI strategy can be 

simplified even further by incorporating a modal approach and thus avoiding the iteration be-

tween the computational fluid dynamics (CFD) and finite element method (FEM) solver [5].  

The idea behind the modal approach is that the geometry of interest deforms according to a 

combination of a limited number of structural mode shapes. FEM calculation therefore has to 

be performed only once, which leads to a faster overall FSI analysis. Structural deformations 

are then taken into account directly by morphing the shape of the geometry and the volume 

mesh surrounding it. Since radial basis functions (RBFs) have been proven in the past as a 

robust choice for mesh morphing [6-8], they are used as an interpolation basis also in the pre-

sent work. Morphing is done by exploitation of RBF Morph™ software that has been shown 

as a powerful and effective tool for solving challenging aerospace [9-12] and non-aerospace 

[13, 14] engineering applications. 

A mode-superposition based FSI strategy is presented in this paper. The strategy is applied 

to a real engineering problem and thus proven as a robust and effective optimization method. 

The theory behind the modal analysis and RBF-based morphing is presented in Section 2 and 

3, respectively. Overall FSI strategy with three distinctive stages is presented in Section 4. 

The strategy is validated in Section 5 and exploited in an aeronautical optimization applica-

tion in Section 6.  

2 MODE-SUPERPOSITION METHOD  

Mode-superposition method is a powerful and well-established theory in structural engi-

neering. It is applicable to both free vibration and forced vibration dynamic problems, regard-

less of the type of the system (continuum or discrete) being treated. 

The basic idea of the theory is to use undamped free vibration modes of a structure in order 

to uncouple the equations of motion. Each vibration mode consists of a natural mode shape, 

characterizing one of the displacement patterns, and its associated natural frequency. Modal 
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analysis is therefore a linear theory that enables a determination of the structural static and 

dynamic response of a discretized system. 

The method basically consists of three steps. First, mode shapes and frequencies of a sys-

tem need to be found performing a modal analysis on the FEM model. The response of each 

mode under aerodynamic loading is then calculated in the second step. The third step con-

cludes with a superposition of a chosen number of responses to find the full modal response to 

a given loading. 

General equations of motion of an undamped discrete system with � degrees of freedom 

(DOF) can be written as 

 ��� + �� = �	
�, (1) 

where � represents a displacement vector, � is the mass matrix of the system, � is its stiff-

ness matrix and �	
� is external excitation vector or loading vector. Assuming an exponential 

solution � = �	���� Eq. (1) can be rewritten into the following eigenvalue problem [15]  

 �� = ����, (2) 

where no external forces were considered. By solving Eq. (2) a complete set of eigenvectors �, 

that represent mode shapes, and eigenvalues ��, that lead to natural frequencies � as � =2��, for all DOF can be obtained. Eq. (2) therefore states that a vibration mode is a configura-

tion in which a balance between elastic resistance and inertial loads occurs. 

According to the eigendecomposition operation all eigenvectors, i.e. mode shapes, are or-

thogonal and form a basis of the eigenvalue problem [16]. The dynamic response of a me-

chanical system can therefore be represented by a superposition of all mode shapes as 

 � = ��, (3) 

where matrix � and vector � represent a complete set of modal shapes and modal coordinates, 

respectively. Mode superposition is therefore a weighted sum of all mode shapes, where mo-

dal coordinates represent the weights.  

A convenient normalization can be obtained by imposing a unit modal mass for each mode 

shape ��, which, taking into account also the orthogonality of the basis, results into 

 ��� ��� = 1, � = 1,2, … , �. (4) 

By inserting Eq. (4) into Eq. (2) an additional simplification can be obtained as 

 ��� ��� = ��� . (5) 

Equations of motion (Eq. (1)) can be, using Eqs. (3), (4) and (5), finally rewritten into � un-

coupled and independent single DOF systems [17] 

  �� + ���  � = ��� �	
� (6) 

that can be solved one at the time in order to obtain all needed modal coordinates  � . Each 

nodal force defined as 

 !�	
� = ��� �	
� (7) 

can be therefore obtained by multiplying mode eigenvector ���  by a real physical force distri-

bution �(t). The complete response of a system to a given loading can finally be obtained us-

ing Eq. (3), with all entities known. 

The number of mode shapes of a structure is in reality equal to its total number of DOF, i.e. 

infinite for a continuum system. In practice it is not necessary to employ all mode shapes in 

order to describe the system. Since the energy associated with each mode decreases with in-
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creasing frequency, a good approximation can be obtained by superimposing only first few 

most energetic mode shapes ��"#$% that tend to provide the greatest contribution to structural 

response [15].                     

Modal approach is typically exploited in dynamic analyses in which the number of modes 

retained is defined on the basis of excited frequencies. Nevertheless, it can be used even for 

approximating a static solution. In this case, Eq. (6) can be simplified to 

 ���  � = !�. (8) 

3 RBF-BASED MORPHING 

Proposed FSI strategy employs mesh morphing done in RBF Morph™ tool. The morphing 

is based on the RBFs defined at discrete points (source points) that are in this way able to in-

terpolate an � dimensional scattered data. The interpolation ensures a smooth morphing of the 

computational CFD mesh and at the same time, an exactly prescribed displacement of the 

source points. 

After defining a set of source points, whether on the surface of the geometry of interest or 

in the volume space surrounding it, with their displacement, the solution of the RBF mathe-

matical problem is sought by the computation of the scalar parameters of a linear system of 

the order equal to the number of considered source points. Once the RBF system coefficients 

have been computed, the displacement of an arbitrary node of the mesh, either inside or out-

side of the domain, can be expressed as a sum of the radial contribution of each source point. 

In such a way, a desired modification of the mesh nodes position can be rapidly applied pre-

serving mesh topology. 

RBFs can be classified on the basis of the type of the support (global or compact) they 

have, meaning the domain where the chosen RBF is non zero-valued. The behaviour and the 

quality of the interpolation therefore depend on the chosen RBF. 

An interpolation function composed of an RBF & and a polynomial ' of order ℎ	 − 	1 (ℎ is 

the order of &), introduced with the aim to guarantee the compatibility with the rigid motion, 

is defined as 

 

*	+� = ,-�
.

�/0
&12+ − +3425 + '	+�, (9) 

where + is a vector identifying the position of a generic node belonging to the surface or vol-

ume mesh, +3� is the 6-th source point position vector (7 is their total number) and ‖∙‖ is the 

Euclidean norm, namely the distance between two points. The minimal degree of polynomial ' depends on the choice of the RBF. A unique interpolant exists if the RBF is conditionally 

positive definite function [18]. In that case a linear polynomial  

 '	+� = :0 + :�; + :<= + :>? (10) 

can be used with RBFs of order ℎ ≤ 2 [19]. A radial basis fit exists if the coefficients -� of the 

RBF and the weights of the linear polynomial vector :� can be found such that the desired 

values of displacement A� are obtained at source points and the polynomial terms give no con-

tributions at source points, i.e. 

 

*1+3�5 = A�, 1 ≤ 6 ≤ 7;		,-�C1+D�5 = 0
.

�/0
 (11) 
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for all polynomials C with a degree less or equal to that of polynomial '. Coefficients -� and :� can be obtained by solving the system 

 F G HH� IJ F-:J = FKIJ, (12) 

where G is the interpolation matrix defined by calculating all the radial interactions between 

source points 

 L�M = & FN+3� − +3ONJ , 1 ≤ 6 ≤ 7, 1 ≤ P ≤ 7 (13) 

and H is a constraint matrix that arises to balance the polynomial contribution and contains a 

column of ”1” and the ;, =, ? positions of the source points in the other three columns 

 

H =
Q
R
1 ;301 ;3�

=30 ?30=3� ?3�⋮ ⋮1 ;3T
⋮ ⋮=3T ?3TU

V. 
 

(14) 

RBF interpolation works for scalar fields, hence a system of the form of Eq. (12) has to be 

solved for each of the three spatial directions. 

Using RBF method for interpolation purposes has several advantages that makes it very at-

tractive for mesh morphing. Since it is a meshless method only grid points are moved regard-

less of the type of the volume cells they belong to. This makes the method suitable for parallel 

implementation that can potentially handle meshes with large number of cells [20]. In fact, 

once the solution is known and shared in the memory, each computer core has the ability to 

morph the nodes on its own mesh partition without knowing what is happening outside. The 

reason for that lies in a global range of the interpolation function where the continuity at inter-

faces is implicitly guaranteed. The method is, in spite of its meshless nature, able to exactly 

prescribe desired deformations of the geometry of interest. This is achieved by using all the 

surface mesh nodes as RBF source points with prescribed displacements, including the simple 

zero displacement condition at the surface that should be left by the morphing tool as unde-

formed. 

4 FSI STRATEGY 

FSI strategy proposed in the present paper is composed out of three sequential stages: vi-

bration modes calculation, RBF solution generation using RBF Morph™ tool and at the end 

an iterative FSI cycle employing CFD solver and mesh morphing through RBF solutions.  

At the first stage, structural mode shapes and associated natural frequencies of deformable 

parts, that are utilized in the mode superposition phase, are calculated by means of a FEM 

solver. For the present paper, Ansys® APDL solver was used in the validation test case (Sec-

tion 5), whereas Abaqus™ FEA software was adopted in the propeller optimization test case 

(Section 6). The number of physically most prominent mode shapes that are used in the sub-

sequent stages has to be chosen at this point. It should be mentioned here that the FEM mesh 

doesn’t have to be conformal to the CFD mesh (used at the third stage) at the geometry sur-

face. For a typical industrial problem, CFD simulation needs a few times finer mesh at the 

surface (in order to simulate or model boundary layer effects) compared to the mesh used at 

the FEM calculation. FEM mesh nodes therefore in general don’t coincide with CFD nodes. 

Because of this reason an interpolation step between both meshes is introduced at the third 

stage that leads to as universal FSI strategy as possible. 
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RBF solution for each mode shape is calculated at the second stage. This is done by the 

means of the deformable surface displacement distribution of the corresponding mode shape 

obtained in previous stage. Parts of the geometry that are considered as rigid are kept con-

strained. In order to obtain an adequate level of CFD mesh quality after each FSI cycle 

morphing iteration, a special attention should be given to each RBF solution. For this reason a 

proper source point’s density and morphing domain dimensions should be used. 

The third stage of the proposed strategy employs an FSI cycle composed out of CFD simu-

lation, modal coordinates calculation and mesh morphing steps. FSI cycle is basically an itera-

tive process which deforms the baseline geometry in such a way that the internal tension 

forces of the structure counteracts the aerodynamic loads on the geometry surface. Since it is 

an iterative process the cycle is finished when the resultant force on the surface converges be-

low a certain threshold, defined by the user. 

A surface distribution of aerodynamic forces � that act on the geometry of interest, as a 

consequence of the airflow passing by, is calculated via a CFD simulation. This aerodynamic 

load, comprised out of two contributions (pressure force and viscous force), deforms the ge-

ometry. In order to apply the deformation in a modal space, a modal force for each mode � 

can be calculated using Eq. (7) as 

 

!� = , W�4�
XYZ[\

�/0
]� . (15) 

Each modal force is therefore a scalar obtained by integrating the external load field over the 

entire structure (all surface nodes) weighted by the �-th mode eigenvector. According to Eq. 

(8) each modal coordinate can then be calculated as 

  � = !���� . (16) 

The last step of the FSI cycle represents the morphing of the mesh and the geometry. A 

linear superposition of all chosen mode shapes (RBF solutions) weighted by the modal coor-

dinates is applied to the CFD mesh in order to deform it. This crucial step is in the modal 

space represented by the following relation 

 

+^_` = +^_`a + ,  �W�
XbcdeY

�/0
, (17) 

where +^_`a and +^_` represent the position of CFD mesh nodes before and after the defor-

mation, respectively. As a consequence of this very same geometry deformation, the aerody-

namic loads are altered at the same time. Next FSI cycle iteration therefore requires another 

CFD simulation on altered geometry that calculates new force distribution and the FSI cycle 

can continue upon convergence. The proposed FSI approach bypasses several complexities 

related to the implementation of the alternative two-way FSI procedures. Its advantage is that 

after the first stage, no further iteration with the structural solver is required, which drastically 

reduces the time of the analysis. 

5 HIRENASD TEST CASE 

A model employed to accomplish a validation of the present FSI approach is one of the 

configurations supplied at the 1
st
 Aeroelastic Prediction Workshop (AePW) [21] launched by 

NASA. In particular, the wind tunnel model of this HIgh REynolds Number Aero-Structural 



Dynamics (HIRENASD) configuration 

tunnel (Figure 1), consists of a tapered 34° aft

critical airfoil profile and a wing span of 1.286m. The numerical 

tions of the test case have been performed under 

reference wing root chord), air density 

conditions (ETW132 data point 

Figure 

5.1 Mode shapes and RBF solutions

Mode shapes and natural frequencies have been calculated using the ANSYS

solver from the FEM model, consisted of the wing,

NASTRAN format made available by the AeWP committee 

first six vibration modes were chosen; their shapes, 

frequencies, are depicted in Fig. 

6 at the bottom right. According to the AePW classification, label B is assigned to the out

plane bending and label Fa to the in

In the second stage, an RBF solution 

the RBF Morph™ tool. Since in both the wind tunnel and the FEM model the fuselage aer

dynamic fairing is mechanically uncoupled from the wing root, a slight deformation of the 

fairing is allowed. This is achieved

fuselage near the wing root (Fig. 3 left) leaving the rest of the fuselage undeformable. Add

tional box-shaped encapsulation domain, presented in Fig. 3 right, is utilized to limit the 

morphing action to the CFD mesh volume close to t

5.2 FSI cycle 

FSI analysis was divided in two subsequent simulation phases that ran on a mixed 1.5 mi

lion cell SOLAR unstructured grid made available by the AePW committee [21]. Both phases 

employed a steady CFD simulation using a compre

Reynolds Spalart-Allmaras turbulence model. A fully developed airflow passing a stiff g

ometry (baseline) was obtained in the first phase, whereas the elastic behaviour of the geom

try was taken into account in the second 

4. Since the baseline flow field is not far from the final deformed one, the proposed two

approach accelerated the FSI cycle convergence through smaller number of CFD iterations in 

the second phase. Aerodynamic load distribution, integrated to obtain all modal forces 
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s (HIRENASD) configuration [22] tested in the Cologne European Transonic Wind 

), consists of a tapered 34° aft-swept wing with a BAC3-11/RES/30/21 supe

nd a wing span of 1.286m. The numerical and experimental 

tions of the test case have been performed under Mach = 0.8, Re = 7·10
6 

(based on the 0.345m 

air density f = 1.22kg/m
3
 and angle of attack (AoA) = 1.5° flow 

ETW132 data point [22]). 

 

Figure 1: HIRENASD wind tunnel model. 

Mode shapes and RBF solutions 

Mode shapes and natural frequencies have been calculated using the ANSYS

solver from the FEM model, consisted of the wing, the excitation system and the balance, in 

NASTRAN format made available by the AeWP committee [21]. For the FSI analysis the 

first six vibration modes were chosen; their shapes, together with the corresponding natural 

are depicted in Fig. 2, starting with Mode 1 at the top left and ending with Mode 

6 at the bottom right. According to the AePW classification, label B is assigned to the out

plane bending and label Fa to the in-plane fore-and-aft bending.  

In the second stage, an RBF solution has been generated for each of the six 

the RBF Morph™ tool. Since in both the wind tunnel and the FEM model the fuselage aer

dynamic fairing is mechanically uncoupled from the wing root, a slight deformation of the 

achieved by removing fixed source points from the portion of the 

fuselage near the wing root (Fig. 3 left) leaving the rest of the fuselage undeformable. Add

shaped encapsulation domain, presented in Fig. 3 right, is utilized to limit the 

morphing action to the CFD mesh volume close to the HIRENASD geometry.

FSI analysis was divided in two subsequent simulation phases that ran on a mixed 1.5 mi

ed grid made available by the AePW committee [21]. Both phases 

employed a steady CFD simulation using a compressible flow SU2 solver with a low

Allmaras turbulence model. A fully developed airflow passing a stiff g

ometry (baseline) was obtained in the first phase, whereas the elastic behaviour of the geom

t in the second phase through the FSI cycle described in the Section 

4. Since the baseline flow field is not far from the final deformed one, the proposed two

approach accelerated the FSI cycle convergence through smaller number of CFD iterations in 

. Aerodynamic load distribution, integrated to obtain all modal forces 

tested in the Cologne European Transonic Wind 

11/RES/30/21 super-

and experimental investiga-

(based on the 0.345m 

and angle of attack (AoA) = 1.5° flow 

Mode shapes and natural frequencies have been calculated using the ANSYS® APDL 

the excitation system and the balance, in 

For the FSI analysis the 

together with the corresponding natural 

starting with Mode 1 at the top left and ending with Mode 

6 at the bottom right. According to the AePW classification, label B is assigned to the out-of-

of the six modes through 

the RBF Morph™ tool. Since in both the wind tunnel and the FEM model the fuselage aero-

dynamic fairing is mechanically uncoupled from the wing root, a slight deformation of the 

om the portion of the 

fuselage near the wing root (Fig. 3 left) leaving the rest of the fuselage undeformable. Addi-

shaped encapsulation domain, presented in Fig. 3 right, is utilized to limit the 

he HIRENASD geometry. 

FSI analysis was divided in two subsequent simulation phases that ran on a mixed 1.5 mil-

ed grid made available by the AePW committee [21]. Both phases 

ssible flow SU2 solver with a low-

Allmaras turbulence model. A fully developed airflow passing a stiff ge-

ometry (baseline) was obtained in the first phase, whereas the elastic behaviour of the geome-

phase through the FSI cycle described in the Section 

4. Since the baseline flow field is not far from the final deformed one, the proposed two-phase 

approach accelerated the FSI cycle convergence through smaller number of CFD iterations in 

. Aerodynamic load distribution, integrated to obtain all modal forces 



through Eq. (15), was composed only out of pressure force contribution. Shear stresses were 

neglected.  

 

Mode 1 (1B) - 25.6 Hz

Mode 3 (1FA) - 106.1 Hz

Mode 5 (4B) - 243.1 Hz

Figure 2: First six mode shapes and natural frequencies 

Figure 3: Fixed 

The surface pressure distribution for the baseline configuration is visualised in Fig. 4 left, 

with the position of the shock wave quickly noticeable along the wing span. The 

distribution with values under 1, can be seen in Fi

The validation of the proposed FSI strategy was performed by comparing t

calculation outputs with respect to 

in [23]. The first output was the vertical displacement of the 

wing (deformed) with respect to the baseline. A comparison of the baseline geometry (grey 
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was composed only out of pressure force contribution. Shear stresses were 

 
25.6 Hz                 Mode 2 (2B) - 80.3 Hz 

 
106.1 Hz                 Mode 4 (3B) - 160.4 Hz

 
243.1 Hz                Mode 6 (2FA) - 252.3 Hz

First six mode shapes and natural frequencies of the HIRENASD model

 

Fixed (left) and encap domain (right) source points.  

The surface pressure distribution for the baseline configuration is visualised in Fig. 4 left, 

with the position of the shock wave quickly noticeable along the wing span. The 

distribution with values under 1, can be seen in Fig. 4 right. 

The validation of the proposed FSI strategy was performed by comparing t

calculation outputs with respect to either numerical or experimental data, which can be found 

was the vertical displacement of the wing tip of the fully converged 

wing (deformed) with respect to the baseline. A comparison of the baseline geometry (grey 

was composed only out of pressure force contribution. Shear stresses were 

 
 

 
160.4 Hz 

 
252.3 Hz 

of the HIRENASD model. 

The surface pressure distribution for the baseline configuration is visualised in Fig. 4 left, 

with the position of the shock wave quickly noticeable along the wing span. The =g surface 

The validation of the proposed FSI strategy was performed by comparing three different 

, which can be found 

wing tip of the fully converged 

wing (deformed) with respect to the baseline. A comparison of the baseline geometry (grey 



colour at the bottom) and the deformed one (green colour on top) can be seen in Fig. 5 left. A 

zoom-in on the wing tip is added in ord

iterations. As the wing’s shape of the third and fourth cycle almost coincides, the convergence 

of the static aeroelastic solution can be judged as reached. The convergence of the vertical 

displacement value at the trailing edge 

ure 5 right. The converged value is 14.6

found in [23] for two different grid setups (13.74 mm for Grid A and 14.02 mm for

Figure 4: Steady state pressure (left)

 

Figure 5: Comparison of wing baseline 

in detail (left). Wing tip vertical displacement at consecutive FSI cycle iterations (right).

The second FSI strategy validation was performed by comparing the pressure coefficient 

distribution with respect to the experimental data

The comparison at four different wing

depicted in Fig. 6. Even though some deviations of the numerical results from the experime

tal measurements can be observed on the pressure suction side the comparison can be

treated as satisfactory. 

Furthermore, a good agreement between the p

cal results [23] of the lift and the drag aerodynamic coefficients for the baseline and the d

formed geometry can be observed in Table 1. 

deformation at both lift and drag coefficient

tion criteria the proposed FSI strategy validation can be considered as positively acco

plished. 
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colour at the bottom) and the deformed one (green colour on top) can be seen in Fig. 5 left. A 

in on the wing tip is added in order to easily compare its position at different FSI cycle 

iterations. As the wing’s shape of the third and fourth cycle almost coincides, the convergence 

of the static aeroelastic solution can be judged as reached. The convergence of the vertical 

trailing edge wing tip point during the FSI study is depicted in

right. The converged value is 14.60 mm, which is very close to the numerical results 

found in [23] for two different grid setups (13.74 mm for Grid A and 14.02 mm for

Steady state pressure (left) and =g (right) distribution on the HIRENASD baseline configuration

 

 

 

 

Comparison of wing baseline (grey) and its deformed geometry (green) together with a 

Wing tip vertical displacement at consecutive FSI cycle iterations (right).

The second FSI strategy validation was performed by comparing the pressure coefficient 

distribution with respect to the experimental data presented in [23] for a deformed geomet

The comparison at four different wing-span locations (in percentage of the wing span 

. Even though some deviations of the numerical results from the experime

tal measurements can be observed on the pressure suction side the comparison can be

good agreement between the proposed approach and the literature numer

cal results [23] of the lift and the drag aerodynamic coefficients for the baseline and the d

formed geometry can be observed in Table 1. The results also show a strong influence of the 

drag coefficient. Based on the presented results of all three valid

tion criteria the proposed FSI strategy validation can be considered as positively acco

colour at the bottom) and the deformed one (green colour on top) can be seen in Fig. 5 left. A 

er to easily compare its position at different FSI cycle 

iterations. As the wing’s shape of the third and fourth cycle almost coincides, the convergence 

of the static aeroelastic solution can be judged as reached. The convergence of the vertical 

wing tip point during the FSI study is depicted in Fig-

the numerical results 

found in [23] for two different grid setups (13.74 mm for Grid A and 14.02 mm for Grid B). 

 

baseline configuration. 

together with a wing tip zoom-

Wing tip vertical displacement at consecutive FSI cycle iterations (right). 

The second FSI strategy validation was performed by comparing the pressure coefficient 

] for a deformed geometry. 

span locations (in percentage of the wing span h) is 

. Even though some deviations of the numerical results from the experimen-

tal measurements can be observed on the pressure suction side the comparison can be still 

roposed approach and the literature numeri-

cal results [23] of the lift and the drag aerodynamic coefficients for the baseline and the de-

strong influence of the 

. Based on the presented results of all three valida-

tion criteria the proposed FSI strategy validation can be considered as positively accom-



Section 1 (14.5% of 

Section 5 (65.5% of 

Figure 6: Comparison of numerical 

 
Aerodynamic 

coefficient 
 

Proposed 
approach 

Cl 0.3593 

Cd 0.0151 

Table 1: Aerodynamic coefficients comparison between the proposed approach and documented numerical 

results for two different grid s

6 PROPELLER OPTIMIZATI

In this case, spinning aircraft propeller deformations due to aerodynamic loads are invest

gated. As a consequence of the deformation

with respect to the ones calculated on the initial geometry. Since the power needed to spin the 

propeller and the thrust the propeller is capable of differ from the expected ones, the propeller 

designer must take into account such deformations. The obj

to increase the efficiency of the chosen propeller taking into account its deformed shape by 

means of the proposed FSI strategy through design of experiments (DoE) analysis.

Test case employs a two-bladed fixed pitch pro

left). The propeller is a result of an 

trel’s electric aircraft - WATTsUP 

ner, extended into a water drop like shape, was used substituting the complete aircraft. All 

CFD simulations including the calculations of the aerodynamic loads were done using finite 
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Aerodynamic coefficients comparison between the proposed approach and documented numerical 

results for two different grid set-ups [23] for the baseline and the deformed geometry.

PROPELLER OPTIMIZATION 

In this case, spinning aircraft propeller deformations due to aerodynamic loads are invest

As a consequence of the deformation propeller’s aerodynamic characteristics cha

with respect to the ones calculated on the initial geometry. Since the power needed to spin the 

propeller and the thrust the propeller is capable of differ from the expected ones, the propeller 

designer must take into account such deformations. The objective of the present test case was 

to increase the efficiency of the chosen propeller taking into account its deformed shape by 

means of the proposed FSI strategy through design of experiments (DoE) analysis.

bladed fixed pitch propeller measuring 1.6m in diamete

left). The propeller is a result of an in-house design and it is intended for a particular Pipi

WATTsUP (Fig. 7 right). In order to simplify the analysis only a spi

ater drop like shape, was used substituting the complete aircraft. All 

CFD simulations including the calculations of the aerodynamic loads were done using finite 
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(95.3% of b) 

pressure distribution at four dif-

Deformed 

Grid A 
(NASA) 

Grid B 
(NASA) 

0.3373 0.3366 

0.0166 0.0147 

Aerodynamic coefficients comparison between the proposed approach and documented numerical 

ups [23] for the baseline and the deformed geometry. 

In this case, spinning aircraft propeller deformations due to aerodynamic loads are investi-

aerodynamic characteristics change 

with respect to the ones calculated on the initial geometry. Since the power needed to spin the 

propeller and the thrust the propeller is capable of differ from the expected ones, the propeller 

ective of the present test case was 

to increase the efficiency of the chosen propeller taking into account its deformed shape by 

means of the proposed FSI strategy through design of experiments (DoE) analysis. 

peller measuring 1.6m in diameter (Fig. 7 

for a particular Pipis-

. In order to simplify the analysis only a spin-

ater drop like shape, was used substituting the complete aircraft. All 

CFD simulations including the calculations of the aerodynamic loads were done using finite 
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volume open source software OpenFOAM® where a multi reference frame (MRF) approach 

was used. In this way an absolute velocity field is calculated in a rotating frame of reference 

and the problem reduces to a steady-state calculation. With introduction of cyclic boundary 

conditions only a half of the propeller had to be simulated, which simplified the problem even 

further. 

The mesh, prepared by the snappyHexMesh utility, consists of 1.6 million cells in a cylin-

drical volume domain (Fig. 8 left). MRF zone occupies only a small portion of the complete 

volume and with its cylindrical shape it tightly embraces the propeller and the spinner (Fig. 8 

right). The propeller has been simulated and later optimized in a take-off and cruise flight re-

gimes. During take-off the propeller spins at 2300RPM and the inflow velocity is 30m/s, 

which results in a tip Mach number of 0.57. During cruise on the other hand the propeller 

spins at 2550RPM. The inflow velocity is 51.4m/s which results in a tip Mach number of 0.65. 

Even though the Mach numbers are quite high the effects of compressibility were not taken 

into consideration in order to simplify the CFD simulation. Instead an incompressible RANS 

solver simpleFoam was used employing high-turbulence Spalart-Allmaras turbulence model. 

Densities of 1.19kg/m
3
 and 1.11kg/m

3
, and kinematic viscosities of 1.5·10

-5
 m

2
/s and 1.58·10

-5
 

m
2
/s were used as airflow properties at the take-off and cruise simulations, respectively. =g 

and pressure surface distributions of a converged baseline simulation at take-off condition can 

be seen in Fig. 9. =granges on average from a value of 10 to a satisfactory maximum of 130.  

According to the CFD simulation the propeller baseline produces approximately 1070 N of 

thrust force and needs 53511 W of power in order to overcome the aerodynamic drag. 

 

 

Figure 7: CAD model of the propeller geometry (left), physical propeller mounted on Pipistrel’s electric air-

craft – WATTsUP (right). 

6.1 Mode shapes and RBF solutions 

The propeller with its internal structure was analyzed with the Abaqus™ FEA software 

where its mode shapes and natural frequencies were calculated in a rotated frame of reference. 

A subset of first five physically most prominent modes has been chosen for the mode-

superposition FSI approach. Emphasized mode shapes together with the corresponding fre-

quencies are presented in Fig. 10, starting with Mode 1 at the top left and ending with Mode 5 

at the bottom right. First four modes represent first four bending deformation modes, whereas 

the fifth mode represents the first order of twist deformation. 

Individual eigenvectors are then used as inputs for the RBF Morph™ tool where RBF solu-

tions for the CFD mesh morphing are computed. In order to reduce the morphing time, a 

morphing domain is set in a form of a cylinder around the propeller blade (Fig. 11). Mesh 
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morphing is therefore limited only to this domain volume thus leaving the major portion of 

the CFD mesh undeformed. Since the propeller is mechanically not connected to the spinner, 

a small portion of the spinner around the propeller root is allowed to modify, leaving most of 

the spinner undeformed. 

   

Figure 8: A half of the total CFD volume mesh (left) and a slice through a mesh (right). MRF zone is denoted 

in green colour. 

 

Figure 9: =g (left) and pressure surface distribution on the upper (middle) and bottom (right) side of a fully 

converged baseline simulation at take-off flight conditions. 

6.2 FSI baseline results 

First an FSI analysis was run on propeller baseline geometry at take-off conditions. An ab-

solute value of a relative difference of each modal coordinate with respect to its converged 

value (fifth iteration) over first four FSI cycle iterations is depicted in Fig. 12 left. All modal 

coordinates vary for less than 0.2% already after the second iteration. Other representatives of 

fast convergence of proposed FSI strategy are the characteristic properties of the propeller, 

thrust and power, collected at each iteration (Fig. 12 right). Here, the left and the right ordi-
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nate axes represent propeller thrust in Newtons and its power in Watts, respectively. It can be 

seen that both propeller characteristics practically don’t change after the second iteration. 

Mode 1 (74.5 Hz) Mode 2 (188.3 Hz) Mode 3 (237.7 Hz) 

  
Mode 4 (466.0 Hz)                            Mode 5 (720.3 Hz) 

Figure 10: First five propeller blade mode shapes with corresponding natural frequencies. Amplitudes are 

emphasized for better presentation. 

 

Figure 11: Morphing domain around the propeller blade depicted in blue colour. 

Deformation of the propeller geometry during the FSI analysis can be observed in Fig. 13. 

Geometry comparison was done in software ParaView. The baseline geometry is depicted in 

grey colour, the first FSI iteration in green colour and the fifth FSI iteration (final and con-

verged geometry) in red colour. The most obvious deformation is blade root bending being 

also the first and also the most dominant eigenmode. Such deformation results as a conse-

quence of the large suction region (low pressure) on the outer portion of upper side of the 

blade seen in the middle Fig. 9. Slight blade tip twist can also be noticed in Fig. 13. The 

source of such deformation can be assigned to the high pressure region located on the outer 

and aft portion of lower side of the blade seen on the right hand side of Fig. 9.  

Results of the FSI analysis on the baseline configuration at the take-off conditions and at 

cruise conditions are presented in numbers in Table 2 and Table 3, respectively. From both 

tables it can be seen that the thrust and the power do not change significantly in spite of a 
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quite perceivable geometry change between the baseline and the deformed geometry. Conver-

gence of all modal weights, propeller thrust and power (Fig. 12) as well as the geometry de-

formation (Fig. 13) indicate a very rapid FSI procedure converge which drastically 

accelerated the optimization presented in the following section. 

Figure 12: Convergence of a relative difference (absolute value) of each modal coordinate (with respect to its 

converged value) (left) and propeller thrust and power (right) during FSI analysis for the propeller baseline at 

take-off conditions. 

 

Figure 13: Comparison of propeller blade geometry at different FSI iterations at take-off flight conditions. Base-

line (grey), the first iteration (green) and the fifth and final iteration (red). 

Parameter 0. iteration/baseline 5. iteration relative difference 

Thrust force (N) 1070 1086 +1.5% 

Power (W) 53511 54395 +1.6% 

Table 2: Results of an FSI analysis on baseline configuration at take-off conditions. 

Parameter 0. iteration/baseline 5. iteration relative difference 

Thrust force (N) 223 220 -1.4% 

Power (W) 28941 28820 -0.4% 

Table 3: Results of an FSI analysis on baseline configuration at cruise conditions. 



6.3 Propeller optimization 

The main objective of the present test case, propeller optimization, was met through DoE 

analysis employing proposed FSI strategy. Optimization variables, chosen to find the optimal 

propeller geometry in the vicinity of the baseline shap
. Both deformations were applied using RBF Morph

ing was needed in order to run CFD simulations. Propeller was optimized with respect to two 

flight regimes (take-off and cru

The optimization objective function used was a weighted sum of propeller efficiencies at 

cruise and take-off flight condition

 

with the propeller efficiency defined as

 

where i denotes the velocity of the aircraft (cruise or take

(18), both contributions were equally weighted. By varying optimization variables, propeller 

pitch and twist angle, a maximal combined efficiency

ometry was sought. A positive pitch angle change is defined as an increase of the angle of a

tack of the airflow incidenting on the propel

other hand reduces the local pitch angle of attack (Fig.

Pitch and twist variations were introduced to the geometry via morphing procedure by a

plying additional artificial morphing

Since the fifth propeller mode shape

mode was used to apply the additional twist to the propeller shape. On the other hand, the 

pitch variation had to be applied

moving domain in a shape of a cylinder and a bigger morphing domain were set 

right). All mesh cells, located inside the moving domain

wise axis for a prescribed pitch angle. T

located outside of the moving domain, were morphed in such a way that a smooth transition 

from rotated to stationary cells (outside of the morphing domain) was made.

assumption has been made that the change of mode shapes and natural frequencies caused by 

the deformation (of small extend) 

Figure 14: The pitch (left) and twist

ing domain (blue cylinder) and the moving domain (red cylinder)

At each of two flight conditions a separate DoE table was filled with 8 times 9 different 

combinations of pitch and twist deformations around the baseline configurat
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The main objective of the present test case, propeller optimization, was met through DoE 

analysis employing proposed FSI strategy. Optimization variables, chosen to find the optimal 

propeller geometry in the vicinity of the baseline shape, were propeller pitch 

. Both deformations were applied using RBF Morph™ tool. As a result, no additional mes

ing was needed in order to run CFD simulations. Propeller was optimized with respect to two 

off and cruise conditions) for as large propeller efficiency as possible. 

The optimization objective function used was a weighted sum of propeller efficiencies at 

off flight condition 

j	
, k� = 12 �^lmn.o + 12��pqors__, 
with the propeller efficiency defined as 

� = tiu , 
denotes the velocity of the aircraft (cruise or take-off). As it can be seen from Eq. 

), both contributions were equally weighted. By varying optimization variables, propeller 

imal combined efficiency and therefore an optimal propeller g

ometry was sought. A positive pitch angle change is defined as an increase of the angle of a

tack of the airflow incidenting on the propeller blade (Fig. 14 left). Positive

al pitch angle of attack (Fig. 14 middle). 

Pitch and twist variations were introduced to the geometry via morphing procedure by a

plying additional artificial morphing RBF solutions at the morphing step of the 

mode shape represents a twist-like deformation by itself, the said 

mode was used to apply the additional twist to the propeller shape. On the other hand, the 

pitch variation had to be applied by calculating additional RBF solution. For the latter, a new 

moving domain in a shape of a cylinder and a bigger morphing domain were set 

. All mesh cells, located inside the moving domain (red), rotated around the blade span

wise axis for a prescribed pitch angle. The cells embraced in the morphing domain

located outside of the moving domain, were morphed in such a way that a smooth transition 

from rotated to stationary cells (outside of the morphing domain) was made.

that the change of mode shapes and natural frequencies caused by 

(of small extend) of the geometry (pitch and twist angle) is negligible.

and twist (middle) positive direction deformation indicated by a

ing domain (blue cylinder) and the moving domain (red cylinder) (right).

At each of two flight conditions a separate DoE table was filled with 8 times 9 different 

combinations of pitch and twist deformations around the baseline configurat

The main objective of the present test case, propeller optimization, was met through DoE 

analysis employing proposed FSI strategy. Optimization variables, chosen to find the optimal 

e, were propeller pitch k and twist angle 

tool. As a result, no additional mesh-

ing was needed in order to run CFD simulations. Propeller was optimized with respect to two 

ise conditions) for as large propeller efficiency as possible. 

The optimization objective function used was a weighted sum of propeller efficiencies at 

(18) 

(19) 

off). As it can be seen from Eq. 

), both contributions were equally weighted. By varying optimization variables, propeller 

and therefore an optimal propeller ge-

ometry was sought. A positive pitch angle change is defined as an increase of the angle of at-

Positive twist angle on the 

Pitch and twist variations were introduced to the geometry via morphing procedure by ap-

solutions at the morphing step of the FSI cycle. 

like deformation by itself, the said 

mode was used to apply the additional twist to the propeller shape. On the other hand, the 

solution. For the latter, a new 

moving domain in a shape of a cylinder and a bigger morphing domain were set (Fig. 14 

, rotated around the blade span-

he cells embraced in the morphing domain (blue), but 

located outside of the moving domain, were morphed in such a way that a smooth transition 

from rotated to stationary cells (outside of the morphing domain) was made. At this point an 

that the change of mode shapes and natural frequencies caused by 

is negligible.  

 

positive direction deformation indicated by an arrow. The morph-

(right). 

At each of two flight conditions a separate DoE table was filled with 8 times 9 different 

combinations of pitch and twist deformations around the baseline configuration. Each point in 



the DoE table is calculated using a proposed FSI cycle strategy, combining CFD simulations 

and mesh morphing. The whole procedure was performed automatically using bash script. 

The script chose a combination of the optimization parameter

the results for each set of parameters. The results of both DoE pr

Fig. 15. Each blue dot represents a single DoE point, where the efficiency is calculated from 

the thrust and power of the deformed p

DoE results were in a postprocessing phase interpolated using a third degree polynomial 

surface (coloured surfaces in Fig

formed a surrogate model that was later used in order to pe

Constraints used were take-off and cruise engine power i.e. 55

The output of the optimization was a pitch and twist pair

objective function i.e. the maximal

gether with the baseline configuration (green point) and optimal configuration (blue 

presented in Fig. 16.  

Pitch and twist angles in the optimal point are 1.045° and 1.482°, respectively. The

weighted sum of both efficiencies increased by

two global degrees of freedom were used in order to optimize the propeller and that the bas

line geometry already presents an optimized design (done in the past by

house software), such an increase of efficiency can be considered as a satisfactory result. 

Figure 15: DoE results at 72 different pitch and twist pairs for take

Figure 16: Surrogate model with the
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the DoE table is calculated using a proposed FSI cycle strategy, combining CFD simulations 

and mesh morphing. The whole procedure was performed automatically using bash script. 

The script chose a combination of the optimization parameters, started FSI cycle and stored 

the results for each set of parameters. The results of both DoE procedures are presented in 

Each blue dot represents a single DoE point, where the efficiency is calculated from 

the thrust and power of the deformed propeller geometry. 

DoE results were in a postprocessing phase interpolated using a third degree polynomial 

ce (coloured surfaces in Fig 15). A summation of both surfaces according to Eq. (1

formed a surrogate model that was later used in order to perform a constrained optimization. 

off and cruise engine power i.e. 55 kW and 41.3

The output of the optimization was a pitch and twist pair (k, 
), that produced the maximal 

objective function i.e. the maximal weighted sum of both efficiencies. Surrogate model is t

gether with the baseline configuration (green point) and optimal configuration (blue 

Pitch and twist angles in the optimal point are 1.045° and 1.482°, respectively. The

both efficiencies increased by 4.0%. Taking into account the fact that only 

two global degrees of freedom were used in order to optimize the propeller and that the bas

line geometry already presents an optimized design (done in the past by

house software), such an increase of efficiency can be considered as a satisfactory result. 

: DoE results at 72 different pitch and twist pairs for take-off (left) and cruise (right) 

 

model with the baseline configuration denoted with a green point and optimal configuration 

with blue point. 

the DoE table is calculated using a proposed FSI cycle strategy, combining CFD simulations 

and mesh morphing. The whole procedure was performed automatically using bash script. 

s, started FSI cycle and stored 

ocedures are presented in 

Each blue dot represents a single DoE point, where the efficiency is calculated from 

DoE results were in a postprocessing phase interpolated using a third degree polynomial 

). A summation of both surfaces according to Eq. (18) 

rform a constrained optimization. 

kW and 41.3 kW, respectively. 

, that produced the maximal 

weighted sum of both efficiencies. Surrogate model is to-

gether with the baseline configuration (green point) and optimal configuration (blue point) 

Pitch and twist angles in the optimal point are 1.045° and 1.482°, respectively. The 

Taking into account the fact that only 

two global degrees of freedom were used in order to optimize the propeller and that the base-

line geometry already presents an optimized design (done in the past by other Pipistrel in-

house software), such an increase of efficiency can be considered as a satisfactory result.  

 

(left) and cruise (right) flight conditions. 

green point and optimal configuration 



M. Andrejašič et al. 

A comparison of the deformed optimized (red) and the deformed baseline geometry (grey) 

can be seen in Fig. 17. From the figure it can be seen how did the local angle of attack at the 

blade inner section increase by the positive pitch angle yet decrease at the blade outer section 

by the positive twist angle. Thrust force and power of the optimized propeller are for the base-

line (0th iteration) and deformed configuration (5
th

 iteration), together with their relative dif-

ference, presented in Table 4 for the take-off flight condition and in Table 5 for the cruise 

condition. The order of magnitude of relative differences didn’t change from the baseline 

analysis (Tables 1 and 2).  

   

Figure 17: Geometry comparison of deformed optimized propeller blade (red) and deformed baseline configura-

tion (grey). 

Parameter 0. iteration/baseline 5. iteration relative difference 

Thrust force (N) 1089 1102 +1.2% 

Power (W) 54140 55004 +1.6% 

Table 4: Main results of the FSI analysis at optimal pitch and twist at take-off conditions. 

Parameter 0. iteration/baseline 5. iteration relative difference 

Thrust force (N) 251.2 247.4 -1.5% 

Power (W) 30049 29901 -0.5% 

Table 5: Main results of the FSI analysis at optimal pitch and twist at cruise conditions. 

7 CONCLUSIONS 

A mesh morphing based FSI strategy was proposed that, connecting the modal analysis of 

the structure of interest, transformation of calculated mode shapes directly to the CFD envi-

ronment using radial basis functions, and iterative calculation of aerodynamic loads and CFD 

mesh morphing, presents an efficient and reliable analysis of engineering problems.  

FSI strategy was first validated by analyzing a well-tested wind tunnel case in transonic 

flow conditions. The results obtained have been favourably compared to those measured dur-

ing the referenced experimental campaign. The strategy was then used in a real world engi-

neering application as the main component of the overall propeller optimization problem, 

where a surrogate method based on the DoE method was used in order to increase the 

weighted sum of efficiencies at two different flight regimes by 4.0%. 
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The main advantage of the proposed technique with respect to other standard approaches is 

that the modal parameterization has to be built only once. Embedding the structural modes of 

deformable parts directly into the computational model enables an immediate application of 

deformation to the CFD grid during the calculation stage.  

Finally, the proposed FSI approach represents a universal procedure that can be exploited 

regardless of the CFD and FEM solver choice, it can be extended to very large models where 

RBF Morph™ has already proven its computational time efficiency and it is applicable to 

both steady and unsteady aeroelastic studies. 
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