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Summary 

This paper aims to investigate the applicability of Adjoint optimization combined with mesh morphing 

to the industrial practice, by the integration of commonly used industrial-grade simulation software.  

Adjoint techniques are efficient optimization methods in terms of accuracy of results and short 

computational cost, but normally are limited to in-house simulation codes, that allow the calculation of 

partial derivatives of the observable quantities within the model simulation. Quite recently, some CAE 

packages introduced this capability within their solvers. This is the case of ANSYS Fluent, which 

makes available the derivatives of a given observable (objective) as a function of mesh points 

coordinates. This, combined with a mesh morphing tool such as RBF Morph, allows to automatically 

compute the derivatives in function of design parameters, such as the amplifications of RBF solutions 

that control the shape of the mesh. 

Integrating these software in the optimization platform modeFRONTIER from ESTECO, it becomes 

possible to apply efficient gradient based optimization algorithms, with the big advantage of a full 

automatic process integration, the possibility to exploit the post-processing tools available in 

modeFRONTIER, and a very short number of design simulations to optimize the objective function. 

Methodology details and CFD application benchmarks will be illustrated. 
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Adjoint optimization combined with mesh morphing  

Optimization based on Computer-Aided Engineering (CAE) simulations plays a central role in many 

engineering and scientific fields. In the modern competitive scenario, being able for companies to 

keep up the pace and to offer innovative design solutions with advanced, efficient and cutting edge 

technologies, is of primary importance [1]. 

In this context, gradient-based methods [2] have emerged as a powerful tool able to drive design, 

exhibiting good performances and speed also in the optimization scenarios characterized by a high 
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number of design variables. The main limitation of these methods relies on the necessity to evaluate 

partial derivatives of the objective function with respect to design parameters; if sensitivities are not 

available from the simulation software, it is necessary to approximate them by finite difference 

evaluations, increasing significantly the computational task as the number of parameters grows. 

Conversely, some commercial software such as ANSYS Fluent are giving the possibility, through the 

Adjoint evaluation, to economically obtain sensitivities values of the defined observable quantity, in 

function of mesh points coordinates. Another software, such as RBF Morph [3], commonly used to 

modify the mesh shape by the usage of morphing parameters [4], when combined with Fluent allows 

the possibility [5] of transforming, by chain rule, the observable sensitivities as function of mesh 

coordinates (xj,node_i in eq.1 below) to sensitivities as function of morphing parameters, i.e. the design 

variables of the optimization problem (xj,param_k in eq.(1) below). 

This allows to set up an optimization workflow, using a software such as modeFRONTIER [6], where 

any gradient-based optimization algorithm can read directly the sensitivities in function of the design 

variables (morphing parameters), without any additional simulation required. For each iteration of the 

algorithm all the derivatives, independently from the number of shape parameters, are computed at 

the cost of a single adjoint simulation, resulting in a very low global number of design simulations to 

reach the optimum solutions of the problem. 

Another advantage of this methodology, from the point of view of its applicability to industrial practice, 

is the possibility to optimize any simulation model without the need of modify and parameterize the 

source CAD. In many industries, CAD departments are in fact independent from the simulation 

departments, therefore if the latter ones need to optimize the shape of any component, this can be 

possible just by applying a mesh morphing tool on the baseline model. The shape obtained at the end 

of the process can be converted into a draft CAD version exploiting RBF Morph back2cad tools and 

used for the generation of the final geometrical model. 

In this paper we will first illustrate the methodology to be followed to easily set up an adjoint 

optimization problem based on morphing parameterization using the commercial software mentioned 

above. The efficiency of the methodology will be evaluated as a function of a different number of 

parameters, using a simple CFD test case. At the end, the methodology will be applied to a realistic 

industrial benchmark, consisting in the shape optimization of a heat exchanger manifold, with the 

objective of guaranteeing a uniform mass flow across the channels. 

Setup of adjoint solver with morphing parameters   

The first application case we have implemented to describe and test the methodology is the 

optimization of the shape a U-bend diffuser pipe, with the target of minimizing pressure drop. 

The model is defined in ANSYS Fluent (fig.1): the flow is laminar (ReD=500), and a static pressure 

condition is applied to the outlet surface (0 Pa). The mesh is controlled by the RBF Morph Add On, 

that allows to modify the mesh according to radial basis functions (RBF) mesh morphing. The 

distribution of RBF points is defined on the surface of cylinders that act as sculpting tools. For this 

application, we have defined scaling rules (in both cross directions) for the points on the cylinders 

along three sections, fixed positions for the points on cylinders at the beginning and at the end of the 
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curve and finally a sixth cylinder to gain the an overall change of the whole curve for a total of 7 shape 

parameters, which control the shape of the cross section of the pipe along the bend [7]. 

In order to set up the adjoint computations and transform the derivatives of the observable function 

(here the pressure drop) in function of the morphing parameters, it is just enough to define few 

commands, that will then be used by modeFRONTIER as a template to repeat the process 

automatically for any configuration proposed by the optimization. The main commands can be 

identified as it follows: 

 (define namevarx valuevarx): for each variable x, define its name and the baseline value 

 (define numiter 400); (define numiteradj 150): define max number of CFD and adjoint iterations 

 (Ti-menu-load-string (format #f "name.cas")): load the Fluent case file 

 (my-open-udf-library rbf-library): load RBF Morph libraries 

 (Ti-menu-load-string (format #f "it ~a" numiter)): run CFD computations  

 (Ti-menu-load-string (format #f "/adjoint/run/iterate numiteradj")): run adjoint  

 (Ti-menu-load-string (format #f "/adjoint/reporting/report inner")); (rbf-smorph-init): initialize 

 (rbf-smorph-adjoint '((namevarx 1))); (define adj-varx (%rpgetvar 'rbf/smorph-adjoint-eval)): 

apply morphing for any variable x, and create a sensitivity variable 

 (define gradfile (open-output-file "Gradients.out")); (display "Sensivitity to varx " gradfile) (write 

adj-varx gradfile) (newline gradfile); (close-output-port gradfile): open an output file and save 

each sensitivity of any variable x   

 (Ti-menu-load-string (format #f "/define/parameters/output-parameters/write-to-file pressure-

drop-op pressure-drop.out")): save observable to another file   

 

Figure 1: Morphing of U-bend diffuser pipe 

At this point the model file is ready to be implemented in modeFRONTIER workflow for the 

automation process definition. 
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Optimization workflow setup: modeFRONTIER   

Figure 2 reports the workflow that has been implemented in modeFRONTIER to automate the 

process execution and define the optimization loop. In the first row each node represents one of the 7 

input parameters which control the morphing parameters: their range of variation has been defined in 

order to amplify the morphing from the minimum to the maximum value allowed. These have been 

selected in order to guarantee a good quality of the mesh during the morphing step. The input nodes 

are linked directly to the application node, the Easydriver node, which uses a template file for the 

automation of Fluent and adjoint computations. Each variable is in fact linked to the position of the 

script file, defined in previous section, where its value is assigned. The driver panel of the node 

defines the command to execute the simulations in batch mode (in DOS the command is simply 

“fluent.exe –i script.scm”, where script.scm is the name of the script file described in sec. 1). Finally 

another template is used to extract the output parameters (observable value and its derivatives) from 

the output files defined in the script, specifying also in this case their relative positions. 

At the end, in the bottom part of the workflow, each output parameter node extracted from the 

application file is linked to the gradient objective node, in which it is specified what is the objective 

function (the observable pressure drop) and which is its derivative for each input variable. 

The optimization can at this point be run choosing one of the available gradient based algorithms 

available in modeFRONTIER (among which, B-BFGS [8], Levenberg-Marquardt, and SQP proprietary 

implementations for single and multi-objective problems, continuous and mixed variables). the first 

application case we have implemented to test the methodology is the shape optimization of the U-

bend diffuser pipe described in the previous section, with the target of minimizing pressure drop. 

 

Figure 2: modeFRONTIER workflow to automate the optimization process 

Adjoint advantages versus parameters number   

In order to prove the efficiency of the proposed methodology, the same optimization problem has 

been analyzed using both a classical approach (Genetic Algorithm or GA) without the usage of the 

gradient, and the gradient-based methodology described in previous sections.  

To compare the efficiency of the two approaches, we have defined a total number of simulations for 

each approach in such a way that the overall computation time could be approximately the same. 



INTERNATIONAL CAE CONFERENCE AND EXHIBITION      2018, 8 - 9 October 

 

Page 5 / 8 

Since one CFD evaluation (400 Fluent external iterations) takes about 4 minutes while the simulation 

completed by adjoint (400+150 additional iterations) takes about 13 minutes, we have to consider that 

for the adjoint approach each design takes a simulation time about three times higher than that for the 

classic one. Therefore, if we have defined 300 as overall number of simulations for the GA approach 

(since by the practical experience [9] 20 generations of 15 designs each one is considered efficient to 

solve a single-objective problem of 7 design variables), we need to define a total number of 

simulations for the gradient-based approach not much higher than 100. 

Despite the fact that gradient-based approaches are very fast, their main limit is the fact that they can 

converge to a local minimum, depending on the choice of the starting point. For this reason, in order 

to improve the robustness of the methodology, we have decided to make the algorithm start from the 

same points of the starting DOE (Design of Experiments) defined for the GA approach, therefore 

leaving a maximum of 7 iterations for each of the 15 DOE points (with 100 simulations, the overall 

computational time will be the same for the two approaches). 

 

Figure 3: Optimization convergence: classical GA (left) and gradient-based approach (right) 

The results of the two methodologies, in particular the convergence history of the pressure drop 

objective function, are defined in figure 3. We can note that the GA (fig.3 left) takes just about 90 

simulations (therefore 360 minutes) to reach the global minimum, while the gradient approach (fig.3, 

right) takes just 7 simulations (therefore 90 minutes) practically whatever is the starting point of the 

DOE (the points with higher value of objective functions in the chart) used to initialize the gradient. 

The gradient-based method is therefore about 4 times faster than the classical GA to reach the global 

optimum. This advantage is particularly evident when the number of parameters increases, since if 

the simulation time does not change much for the gradient approach, it increases linearly for 

algorithms based on evolutionary process.  

To prove this advantage, we have repeated the analysis for this model changing the number of 

parameters, fixing as constant some of them to reduce the number, or adding other morphing 

parameters (i.e. number of controlled sections) to raise it. The expected behavior is confirmed by the 

results obtained (fig.4). The two approaches are compared, in terms of overall simulation time 

required to reach to global optimum, and the advantage of the gradient approach increases with the 

number of parameters. The number of iterations for the adjoint approach here increases just because 

of the higher influence of local minima to the algorithm convergence: to reach the global optimum, it is 

necessary to explore a DOE of an higher number of points (for the case with 12 parameters in fig.4, 

we have defined a DOE of 15 points, then applied 7 B-BFGS iterations starting from the best point of 
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the DOE to reach the same global optimum that has been reached by the GA in 168 iterations: the 

CPU time ratio is 672 minutes for the GA, and 264 minutes for the 22 simulations completed by the 

gradient approach). 

 

Figure 4: Influence of parameters number on the convergence speed (CPU time in minutes) 

Heat exchanger manifold optimization   

The important conclusions we have obtained in the previous section could have been partially 

influenced by the relative simplicity of the model considered, e.g. steady laminar flow, and the linearity 

of the objective function. For this reason, we have applied this approach to a different application, the 

optimization of the shape of an intake manifold of a heat exchanger (fig.5: ReD=50.000, kturbulent 

model). 

The baseline shape is not optimal, since even though the mass flow is split in a pretty uniform way to 

the 10 outlet channels (as we can note in fig.5), the flow is not fully developed as it enters in each 

channel (see for instance channels from 2 to 6 from the left): a longer development length causes an 

increase of pressure drops in the channels and a worse heat exchange performance [10].   

 

Figure 5: Velocity field in heat exchanger manifold 
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We have therefore computed an adjoint simulation, defining as observable to be optimized the sum of 

the standard deviation of velocity field at the inlet of each outlet channel, in order to optimize the 

uniformity of the velocity field of each channel at its inlet; at the same time, to keep an uniform split of 

mass flow as good as the baseline, we have added a constraint for each channel imposing that mass 

flow deviation from the average one is less than the one of the baseline (0.03 kg/s).  The objective 

and constraints are therefore defined as: 

min∑∫ (𝑣 − �̅�)2𝑑𝑆
𝑠𝑒𝑧_𝑖

10

𝑖=1

|∫ 𝜌𝑣𝑑𝑆
𝑠𝑒𝑧_𝑖

− Φ̅| < 0.03 𝑖 = 1, . .10 
 

(2) 

At this point, to define an efficient set of morphing parameters, we have observed the sensitivity field 

(function of the mesh points) as obtained by the adjoint simulation of the baseline. As we can note 

from fig.6, the regions where the sensitivities are higher correspond to the area where the inlet pipe is 

merged to the manifold, and to some channels point of contact with the manifold. 

 

Figure 6: Sensitivity field of baseline design (left) and definition of morphing parameters (right) 

These ones are the areas where it is expected to find the highest variation of the objective function, 

for this reason we have defined (fig.6, right) across these region some cylinders (left and right parts in 

the top curve of the manifold, and bottom part of the inlet pipe) and other morphing surfaces (in 

correspondence of the interface sections between outlet channels and manifold), to modify the shape 

of the mesh in these areas. The morphing entities are represented in fig.6, for a total of 23 control 

parameters, defined by the scale factors of the cylinders radius and the scaling in two directions of the 

channel surfaces.  

The gradient-based approach described in previous sections has therefore been applied to this 

model. For the optimization process, it has been applied a B-BFGS algorithm, that has reached the 

convergence after a total number of about 50 iterations. To speed up the convergence, the process 

has been split into two phases. 

In the first phase, only the three variables related to the manifold shape have been considered, 

obtaining a convergence after 15 iterations with a reduction of the velocity field variance at the 

channels inlet from 12.08 m
2
/s

2
 to 9.57 m

2
/s

2
 (-20%). The best configuration found after this first 

phase has been used as starting point for the following phase, in which the adjoint simulation has 

been set up in function of the 20 parameters controlling the channels inlets. After 30 further 

simulations, the velocity field variance has been further reduced to 7.72 m
2
/s

2
, still respecting the 

constraint on the mass flow split, for a global reduction of the objective function with respect to the 

baseline configuration of over 36%. Figure 7 reports the velocity field in the optimized configuration, 

which can be compared with the baseline represented in fig.5. 
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Figure 7: Optimized shape of manifold; compare velocity field with baseline (fig.5) 

Conclusions 

In this paper we have described, tested and applied to a CFD multi-objective optimization problem a 

methodology based on adjoint simulation combined with morphing parameterization and gradient-

based optimization algorithm. The advantage of the approach, which has proved to be highly 

competitive in terms of simulation time and efficiency of results compared to other classic  

approaches, relies on the fact that it can be applied linking together CAE software of large industrial 

diffusion, such as ANSYS, RBF Morph and modeFRONTIER, and it is not an intrusive method 

requiring to modify simulation codes, but is very simple to implement  for any industrial application just 

using the available GUI interfaces. 
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