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ABSTRACT 

This paper demonstrates the solution of industrial aerodynamic shape optimization problems using the 

optimization methods provided by the RBF4AERO platform, developed in the framework of the EU–funded 

RBF4AERO project (Grant Agreement No: 605396). The platform provides a complete infrastructure needed for 

optimization problems, including GUI, Optimization Algorithms, CFD Solvers, Morpher Tool and Benchmark 

Management System. Both stochastic and gradient-based optimization methods are implemented on this 

platform. The design variables are related to a morphing tool based on Radial Basis Functions (RBFs) which 

control the deformation of both surface and volume meshes. Whenever the optimization is based on gradient-

based techniques, the continuous adjoint method is used to compute the sensitivity derivatives while the Morpher 

tools give the mesh deformation velocity. The stochastic tool is based on Evolutionary Algorithms (EAs) assisted 

by surrogate evaluation models (Response Surface Methods, RSM). A sampling technique (Design of 

Experiments) provides the training patterns of the RSM which is exclusively used as the evaluation tool within 

the EA-based optimization. At the end of each EA-based optimization, the resulting “optimal” solution(s) are re-

evaluated by means of the CFD tool, before proceeding to the next cycle if needed. The optimization of car and 

aircraft models on the RBF4AERO platform is showcased.  

 

1 INTRODUCTION 

Aerodynamic shape optimization is an attractive topic for both academia and industries. An automated shape 

optimization loop includes the shape parameterization scheme (the parameters of which act as the design 

variables), the flow (CFD) solver, an optimization method capable of computing the optimal value set of the 

design variables and a method adapting (or regenerating) the CFD mesh to each candidate solution. 

Optimization methods can be classified into two main categories, stochastic and gradient-based ones. The 

most widely used stochastic methods are the Evolutionary Algorithms (EAs) which, apart from their flexibility, 

may compute the global optimum, though at a computational cost that scales with the number of design 
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variables. For this reason, the use of "standard" EAs in large scale optimization problems becomes often 

prohibitively expensive. A remedy to this problem is the implementation of surrogate evaluation models or 

metamodels, leading to the so-called metamodel-assisted EAs (MAEAs). Their role is to replace the exact 

evaluation tool (CFD code), thus reducing the total number of expensive evaluations required to reach the 

optimal solution(s). MAEAs could be based on on-line trained metamodels, such as artificial neural networks or 

RSM, that are trained on the fly during the evolution, based on the already evaluated individuals, as in [1]. The 

RBF4AERO platform, though, supports off-line trained metamodels. In fact, there is a single global metamodel 

built which needs a sampling technique, often referred to as Design of Experiments (DoE), [2], to collect the 

necessary training patterns. The trained metamodel is used as the evaluation tool during the EA-based search. 

In aerodynamic shape optimization, gradient-based methods mostly rely upon the (discrete or continuous) 

adjoint method [3] to compute the gradient of the objective function; they require a greater effort for 

development and code maintenance whereas new method developments are due if a new flow model or objective 

function is to be used; in return, the cost per optimization cycle does not scale with the number of design 

variables. In this work, a continuous adjoint method [4] (first-differentiate-then-discretize; implemented on an 

in-house version of the OpenFOAM software, http://www.openfoam.com) that also differentiates the turbulence 

model is used to compute the sensitivities of the drag (objective function) w.r.t. the shape controlling parameters. 

Either with stochastic or gradient-based optimization methods, a shape/mesh morphing tool may help a lot 

to avoid repetitive costly re-meshing tasks since it simultaneously affects the surface to be designed and the CFD 

mesh. Radial Basis Functions (RBFs, [6]), volumetric B-splines or NURBS [5] etc can be used as morphing 

tools. Here, the RBF Morph software [6], is employed. Parameters controlling the positions of groups of RBF 

control points are used as design variables. 

This paper presents the use of the above-mentioned optimization methods on the RBF4AERO platform. 

This platform is developed to support top-level aeronautical designs, including multi-physics and multi-objective 

optimization, fluid-structure interaction and ice accretion simulation. The use of the RBF mesh morphing 

technique significantly boosts the aerodynamic design process. EAs and adjoint methods are included. 

Applications on a car and an ultra-light aircraft shape optimization problem are presented. 

2 EA-based Optimization using Metamodels 

  

The EA-based optimization algorithm integrated within the RBF4AERO platform implements metamodels to 

reduce the CPU cost. First thing is the definition of the design variables. Once the shape is controlled by the 

morphing tool, the latter provides the N design variables. A DoE technique selects individuals to undergo 

evaluation on the CFD tool, after appropriately deforming the baseline mesh using RBF Morph. The evaluated 

individuals (design variable value sets paired with the corresponding performance metric computed by a CFD 

code) are stored in the database (DB) and become the training patterns for the RSM. An EA-based optimization 

runs by performing evaluations on the trained RSM and converges to the “optimal” solution(s); quotes are used 

since the evaluation is based on the metamodel. "Optimal" solution(s) need to be evaluated anew on the CFD 

code and appended to the DB. Depending on the gap between CFD and metamodel-based predictions, the RSM 

might be trained anew before starting a new optimization cycle. The RSM training, the EA-based optimization 

and the re-evaluation(s) constitute the three phases of an optimization cycle. If a subset of the design space is not 

explored sufficiently, there is an option to continue with additional CFD evaluations. All the optimization 

algorithm settings, i.e. the DoE, the RSM and the EA parameters are user--defined through the RBF4AERO 

platform GUI. The overall optimization process is shown in fig. 1. 

The individuals selected by the DoE are evaluated and used to train the metamodel. The RBF4AERO 

platform implements a regression model (RSM) [7] based on polynomial functions, 

  

F̂(x⃗ ) = b0 + ∑ ∑ bijxi
jPi

j=1
N
i=1 + ∑ aj ∏ xi

IiN
i=1

M
j=0      (1) 

 

where �̂�  is the approximate objective function value, 𝑥𝐼  is the 𝑖𝑡ℎ design variable, M the number of interactions, 

𝐼𝑖  the power that design variable i is raised to and 𝑃𝑖  the maximum power for each variable. The training phase 

computes the RSM’s coefficients 𝑏𝑖𝑗 , 𝑎𝑗 . Interactions, [8], are factors which multiply the design variables with 

each other. These factors are replicating the relationship and the dependence between the design variables. The 

least-squares method is used to train the RSM, because the number of training patterns may exceed the number 

of the coefficients to be computed. The training cost depends on the number of unknown coefficients. The 𝑃𝑖  and 

𝐼𝑖  values of eq.1 can be either selected by the user or automatically defined by minimizing the RSM's error. A 

different RSM, i.e. with different configuration (maximum powers, interactions), is trained for each objective 

function and constraint of the problem. 

After having trained the metamodel, a (μ, λ) EA, with μ parents and λ offspring, undertakes the 

optimization by exclusively evaluating offspring on the RSM tool. A real-coded EA with tournament selection 
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for the parent population and a simulated binary crossover scheme is implemented. The computational cost of 

RSM is negligible. Upon the termination of the evolution, the “optimal” solution(s) resulting from EA are re-

evaluated on the CFD tool and added to the DB. 

 

 
Figure 1.  The RBF4AERO optimization platform. 

 

The optimization loop terminates if any of the following three criteria is met. The first criterion is related 

to the computational budget and is quantified by the maximum number of CFD evaluations the user may afford. 

This limits the size of the initial sampling and the times RSM can be re-trained. The second criterion is related to 

the RSM prediction accuracy; we consider that the optimal solutions have been found, if the RSM error is very 

small and its prediction practically replicates the objective function value which results from the CFD tool. The 

third criterion stops the EA if the “optimal” solution does not improve during a number of evaluations. 

3 The Continuous Adjoint Method 

 

In this section, the formulation of the continuous adjoint PDEs to the incompressible Navier-Stokes equations, 

their boundary conditions and the sensitivity derivatives (gradient) expression are presented in brief.  The mean 

flow equations together with the Spalart-Allmaras turbulence model PDE, [9],  

 

𝑅𝑃 = −
𝜕𝑣𝑖

𝜕𝑥𝑖

= 0 

Ri
v = vj

∂vi

∂xj
−

∂τij

∂xj
+

∂p

∂xi
= 0                          (2) 

Rv̅ = −
∂(vjṽ)

∂xj

−
∂

∂xj

[(ν +
ν̃

σ
)

∂ṽ

∂xj

] −
cb2

σ
(
∂ν̃

∂xj

)

2

− ṽ(P(ṽ, Δ) − D(ṽ, Δ)) = 0 

 

comprise the flow or primal system of equations, where 𝜏𝑖𝑗 = (𝜈 + 𝜈𝑡) (
𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) are the components of the 

stress tensor, 𝑣𝑖 are the velocity components, p is the static pressure divided by the density, ν and 𝜈𝑡 the bulk and 

turbulent viscosities, respectively, 𝜈 the Spalart-Allmaras model variable and Δ the distance from the wall 

boundaries. 

Let F be the objective function to be minimized by computing the optimal values of the design variables 

𝑏𝑛 , 𝑛 ∈ [1, 𝑁]. A general expression for F defined on (parts of) the boundary S of the domain Ω is 

 

           F = ∫ FSi
nidS

S
      (3) 
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where n is the outward normal unit vector. Differentiating eq.3 w.r.t to  𝑏𝑛 and applying the chain rule yields 

 
δF

δbn
= ∫

∂FSi

∂vk
ni

∂vk

∂bn
dS

S
+ ∫

∂FSi

∂p
ni

∂p

∂bn
dS

S
+ ∫

∂FSi

∂τkj
ni

∂τkj

∂bn
dS

S
+ ∫

∂FSi

∂ṽ
ni

∂ṽ

∂bn
dS

S
+

∫ ni

∂FSi

∂xk

δxk

δbn
nkdS

S
+ ∫ Fsi

δ(nidS)

δbnS
       (4) 

 

where 
𝛿𝛷

𝛿𝑏𝑛
 denotes the total derivative of any quantity Φ while 

𝜕𝛷

𝜕𝑏𝑛
 is its partial derivative.  

The continuous adjoint formulation starts from the definition of the augmented objective function 

 

 Faug = F + ∫ uiRi
vdΩ

Ω
+ ∫ qRPdΩ

Ω
+ ∫ vãR

v̅dΩ
Ω

    (5) 

 

where 𝑢𝑖 are the components of the adjoint velocity vector, q is the adjoint pressure and  �̃�𝑎 is the adjoint 

turbulence model variable, respectively. The Spalart-Allmaras model PDE has been differentiated as in [10]. The 

differentiation of eq.5, based on the Leibniz theorem, yields 

 
δFaug

δbn
=

δF

δbn
+ ∫ ui

∂Ri
v

∂bn
dΩ

Ω
+ ∫ q

∂RP

∂bn
dΩ 

Ω
+ ∫ Rv̅ ∂Rva̅̅ ̅̅

∂bn
dΩ

Ω
+ ∫ (uiRi

v+qRP + να̃R
v̅)nk

∂xk

∂bn
dS

SW
      (6) 

 

Then, the derivatives of the flow residuals in the volume integrals of eq.6 are developed by differentiating eq.2 

and applying the Green-Gauss theorem. This development can be found in [10] and [11]. 

In order to obtain a gradient expression free of partial derivatives of the flow variables w.r.t. 𝑏𝑛, their 

multipliers in (the developed form of) eq.6 are set to zero, by satisfying the field adjoint equations 

 

Rq = −
∂uj

∂xj
= 0     

Ri
v = uj

∂vj

∂xi
−

∂(vjui)

∂xj
−

∂τij
a

∂xj
+

∂q

∂xi
− να̃

∂ν̃

∂xi
−

∂

∂xl
(νa  ̃ν̃

CY

Y
emjk

∂vk

∂xj
emli) = 0  (b)          (7) 

Rνα̅̅ ̅̅ = −
∂(vjνα̃)

∂xj

−
∂

∂xj
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ν̃

σ
)
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∂xj

] +
1

σ
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+ 2
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σ

∂y
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(να̃

∂ν̃

∂xj
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+
∂νt

∂ν̃

∂ui

∂xj
(
∂vi

∂xj
+

∂vj

∂xi
) + (𝐷 − 𝑃)να̃ = 0    

 

where 𝜏𝑖𝑗
𝑎 = (𝜈 + 𝜈𝑡) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) are the components of the adjoint stress tensor. The last equation is the adjoint 

turbulence model one, from which the adjoint turbulence model variable 𝜈𝛼 is computed. The adjoint boundary 

conditions are derived by treating the flow variations in the boundary integrals of eq.6. This development and the 

remaining terms which give the sensitivity derivatives are presented in detail in [10], [11].  

The gradient-based algorithm used to minimize the objective function is described in brief below: 

1. Define the shape modification parameters (design variables, bi). 

2. Solve the flow equations (eqs.2). 

3. Compute the drag force value, 𝐹𝐷 = ∫ (−𝜏𝑖𝑗 + 𝑝𝛿𝑖
𝑗
)𝑛𝑗𝑟𝑖𝑑𝑆,

𝑆𝑊
 where 𝑟  is a unit vector parallel to the 

farfield velocity. 

4. Solve the adjoint equations, eqs. 7. 

5. Compute the deformation velocities and through them, the sensitivity derivatives. 

6. Update the design variables by 𝛥𝑏𝑖 = −𝜂𝛿𝐹/𝛿𝑏𝑖,  where 𝜂 is a user-defined step. 

7. Update the surface and the CFD mesh through the morphing tool. 

8. Unless the stopping criterion is met, go to step 2. 

4 RBF-Based Morphing 

The individuals determined by the DoE or the adjoint method are evaluated on the CFD tool. In this paper, all 

evaluations are carried out using the steady state solver of OpenFOAM. For each candidate solution, a new mesh 

is adapted to the new geometry. Instead of re-meshing, an RBF-based morpher undertakes the modification of a 

baseline mesh before delivering it to the evaluation manager for the CFD run. All baseline meshes have been 

generated using the snappyHexMesh tool of OpenFOAM. 

RBFs are mathematical functions able to interpolate data defined at discrete points only (source points) in 

an n-dimensional environment. The RBF expression has the following form: 
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s(x) =  ∑ γiφ(||x − xki
||)N

i=1 +  h(x)     (8) 

 

where 𝛾 and the coefficients of the polynomial h(x) are fitted by imposing the known values at source points 𝑥𝑘𝑖
. 

φ controls the quality and behavior of the interpolation. The bi-harmonic function 𝜙(𝑟) = 𝑟 is well established, 

smooth and fast, that is why this is used in 3D mesh morphing. A linear system with size equal to the number of 

considered source points (RBF centers) is solved to compute the coefficients. The displacement of any mesh 

node can be computed as a function of the distance-based contributions from each RBF center. 

The RBF method has some attractive advantages for mesh morphing. First of all, it is amenable to 

parallelization, because the displacement of each node does not depend on connectivity data. Additionally, it is 

able to exactly prescribe known deformations onto the surface mesh. This can be achieved by using all the mesh 

nodes as RBF centers with prescribed displacements, where a surface which is left untouched takes on zero 

displacements. The RBF Morph software [6], included in the RBF4AERO platform, has a fast solver capable to 

fit large dataset (hundreds of thousands of RBF points can be fitted in a few minutes) and with a suite of 

modeling tools that allows the user to easily set-up each shape modification. So, this software is able to cope 

with the challenges raised from industrial mesh morphing applications.  

 

5 Application I: Optimization of the DrivAer car model 

In this section, the two optimization algorithms (EA and adjoint based) are utilized to minimize the drag force 

exerted on the surface of the DrivAer car model; this is a generic car model developed at the Institute of 

Aerodynamics and Fluid Mechanics of TU Munchen, [12], to facilitate aerodynamic investigations of passenger 

cars. The fast-back DrivAer configuration with smooth underbody, with mirrors and wheels (F_S_wm_ww) is 

used here. Six shape deformation variables (design variables) are defined in total and the corresponding 

deformation velocities are depicted in fig. 2.  

 

 

  

   

Figure 2. DrivAer Shape Optimization: Deformation velocities on the car surface, corresponding to the normal displacement 

of the surface caused by a "unit" displacement of the six design variables, according to the morphing tool set-up. 

 

A computational mesh of approximately 5 million cells is used and turbulence is modeled by means of the 

Spalart–Allmaras model with wall functions. In the sake of simplicity, the steady state solver (simpleFOAM) 

was used even though the flow around the car varies in time. 15 optimizations cycles were needed by the adjoint-

based method to reduce the mean drag value by more than 7%. The evolution of the objective function value 

during the flow solver iterations over the optimization cycles is shown in fig.3 (left). 

The same case was also optimized with EAs. A random factorial design selected 20 samples at the 0 th 

optimization cycle and, based on them, the RSM was trained. A (25, 50) EA with max 500 evaluations on the 

RSM follows and its “optimal” solution was re-evaluated on the CFD tool and the result was recorded in the DB. 

10 optimization cycles in total were necessary for the optimization to convergence, see fig. 3 (right). 

Both methods yield almost similar results, more or less at the same computational cost and both reduce 

the objective function value by about 7%. The resulting optimal geometries are similar and small differences can 

be identified in the front bumper and the spoiler, see fig. 4. The pressure fields, plotted over the initial and 

optimized geometries that resulted from the EA-based optimization are shown in fig. 5 and 6.   

The area with the highest deformation is located at the rear part of the car. The first major displacement is 

associated with reshaping the rear windshield by lowering its height and also a spoiler is formed at the end of the 

trunk. This creates an area of increased pressure at the bottom of the rear windshield and despite the increased 

pressure on top of the formed spoiler, a force pushing the car forward is generated. The second trend is to create 

a “boat tail” effect which increases the pressure at the rear side of the car, contributing thus to drag reduction.                                       
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Figure 3. DrivAer Shape Optimization: Convergence histories of the adjointt-based optimization (left) and the EA (right). 

 

 
Figure 4.  DrivAer Shape Optimization: Comparison between the "optimal" shapes computed by the EA- (starboard) and the 

adjoint-based (port) optimization 

 

 
Figure 5.  DrivAer Shape Optimization: Shape comparison between the baseline (port) and "optimal" shapes (starboard). 

Isobar contours are plotted. 

 

 

 
Figure 6.  DrivAer Shape Optimization: Comparison between baseline (port) and “optimal” shapes (starboard). 
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6. Application II: Optimization of an Ultra-Light Aircraft 

The second case is concerned with the re-design/optimization of an ultra-light aircraft [13]. The aircraft 

(reference) geometry was provided by Pipistrel, a light aircraft manufacturer partner of the RBF4AERO project. 

The flow conditions are 𝑀∞ = 0.08, 𝑎∞ = 10𝑜 and 𝑅𝑒 = 106 (based on the wing chord). Each candidate 

solution is evaluated on simpleFoam coupled with the Spalart-Allmaras turbulence model with wall functions. 

The CFD mesh around the reference aircraft is unstructured with approximately 4.7M cells. 

An optimization is performed with the EA method aiming at the minimization of its drag coefficient. The 

re-design focuses on the wing root-body junction by defining two boxes, the larger one for restricting the 

morphing action and smaller one that contains the entire wing. The second box acts via 3 design variables; these 

correspond to the displacements of the control box in the x, y, z axes. The RBF Morpher deforms the CFD mesh 

outside the small box while keeping the mesh around the big box intact. The 45 samples, selected by a random 

design and evaluated on the CFD tool, are used to train the 6th degree (𝑃𝑖 = 6) RSM. Then a (15, 30) EA 

undertakes the optimization with a termination criterion of 500 evaluations on the RSM and its “optimal” 

solution is re-evaluated on the CFD tool. The DB is enriched and the RSM is re-trained. Note that each time the 

RSM should be retrained, a different degree and coefficients of the RSM’s equation might be used. 10 

optimization cycles were performed. The convergence history of the optimization, without including the initial 

DoE samples’ evaluations, is shown in fig. 7. 

 

  
Figure 7. Ultra-light Aircraft Shape Optimization: Convergence history of the EA-based (left) and the adjoint-based (right) 

optimization. 

Compared to the reference aircraft, the optimization has reduced the drag coefficient by 9%, due to the 

displacement of the junction towards the rear and bottom part of the fuselage. A by-product of the optimization 

is that the lift has increased, even though this has not been included in the objective function. A comparison of 

the pressure field on the aircraft surface, between the reference and the “optimal” shape, is shown in fig. 8. 

 

 

 
Figure 8. Ultra-light Aircraft Shape Optimization: Comparison of the reference (right) and the "optimal" (left) shape from 

the front (top) and bottom (bottom) view. 
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The adjoint-based method performed a slightly different optimization on the same aircraft by trying to 

maximize the lift-to-drag ratio. The geometry is controlled by four RBF-based design variables which may 

change the shape of the wing-fuselage junction close to the leading and trailing edges as well as parts of the 

upper fuselage surface. The convergence of the optimization algorithm is shown in fig 9. It can be observed that 

the lift-to-drag ratio has increased by 15%, caused by 10% drag reduction and a 4% lift increase. The optimized 

geometry is illustrated in fig. 9. 

 

 
 

Figure 9.  Ultra-light Aircraft Shape Optimization: Optimal solution’s shape obtained using the gradient-based optimization. 

6. Conclusions 

In this paper, a demonstration of the RBF4AERO benchmark technology platform and its optimization 

capabilities were attempted. The platform aims to run/solve optimization problems in less computational cost in 

contrast with current practices and with flexibility for the user. Under the same platform, EA or adjoint-based 

optimization software combined with the RBF Morpher tool and CFD/FEM solvers form two optimization 

strategies which achieve the aforementioned goal. These methods were applied for the optimization of two 

industrial cases, a car model and an ultra-light aircraft.  
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