CFD Centre Faculty of Engineering

An optimization study of a ship hull

A. Pranzitelli^a & D. Caridi^b

^aUniversity of Leeds, Leeds, UK ^bANSYS UK, Sheffield

ANSYS Webinar 7,9 June 2011

Optimization of a ship hull

Improving the performance of a ship hull

HOW?

Several configurations have to be tested

RBF-Morph

Classical approach: towing tank tests \rightarrow money and time demanding

CFD optimization

Requisites:

- reliable
- cheap
- ➤ fast

CAD & mesh generation require many man-hours

UNIVERSITY OF LEEDS

Test case description

Ship hull: Series 60, C_B=0.6

- external hydrodynamics
- multiphase flow (air & water)
- > ship advancing steadly in calm water
- ➢ trim and sinkage fixed
- displaced volume as constraint
- resistance prediction

TARGET: Optimization of the hull shape with no displacement reduction

Reduction of the resistance

Workflow

Baseline simulation, results

UNIVERSITY OF LEEDS

> Model length $(L_{pp})=3.048m;$ ≻ F_r=0.316

		cells	C _T	ΔC _T
Selected for	Coarse	331'652	5.81x10 ⁻³	-2.52%
optimization	Medium	692'984	5.94x10 ⁻³	-0.34%
	Fine	1'274'742	5.96x10 ⁻³	0%
IIHR, University of Iowa	Exp.	-	5.96x10 ⁻³	

0

RBF-Morph setup

RBF-Morph setup

Base scale factor for each section: 1.1 Multiplied by the amplification factor

Morphing, sections

ANSYS FLUENT 13.0 (3d, pbns, vof, sstkw)

Morphing, effect on the mesh

Morphing Preview (A1=0, A2=0, A3=0, A4=0, A5=0, A6=0, A7=0, A8=0)

Jun 06, 2011 ANSYS FLUENT 13.0 (3d, pbns, vof, sstkw)

RBF-Morph set-up, integration in the workbench

Parameters definition (Fluent + RBF Morph)

- 8 input parameters: amplification factors
- 2 output parameters: resistance and volume

	*	A		
	1	FLUENT		
	2	🍓 Setup 🗸 🖌		
	з	🗑 Solution 🛛 建 🖌		
	> 4	Parameters	-	_
ara	meter	Set		
ara	ameter	Set		
°ara	ameter	Set		
Para ▼ 1	ameter	Set B Goal Driven Optimization		
▼ 1 2	emeter	Set B Goal Driven Optimization Design of Experiments	~	
 vara 1 2 3 		B B Boal Driven Optimization Design of Experiments Response Surface	✓ ✓	
▼ 1 2 3 4		Set B B B B B B B B B B B B B B B B B B B	✓ ✓ ∛	

Input Parameters	Output Parameters
sec-1c-Unassigned	volume-box
sec-2c-Unassigned sec-3c-Unassigned sec-4c-Unassigned sec-5c-Unassigned sec-6c-Unassigned sec-7c-Unassigned sec-8c-Unassigned	force-x
View	Create View More V

Amplification factors exported as parameters to the workbench
 Initial solution: baseline solution

Automatic modification of the case file: morphing

ization Method Case Modification			1
ate how long to run with the original :	ettings. Then define any modifications to the case settings and how lo	ng to run with each.	
ed Modifications			
ctive Name	Commands	Number of Iterations/Time Steps	
Pre-Initialization	(rbf-morph (list (list "sec-1c" (get-cus		
Original Settings		2000	
Modification 1		0	
		-1	
	OK Define Macro Cancel Help		

Workbench set-up, Goal driven optimization

Sensitivity analysis

Results

*one Intel[®] i7 guad-core processor, 2.8GHz

Conclusions

Performance:

- Mesh generation: 6 man-hours
- Fluent case setup: 1 man-hours
- Baseline simulation (coarse grid): 4 CPU*-hours
- Workbench and RBF-Morph setup:1 man-hours
- DOE (45 simulations): 45 CPU*-hours

Benefits:

- ✓ integrated in the ANSYS software, automated
- ✓ no need to go back to CAD
- \checkmark no need to remesh the model
- ✓ no loss of grid quality for small deformations
- ✓ few human hours necessary

What without Workbench & RBF-Morph....

- Mesh generation (first mesh): 6 man-hours
- Geometry (CAD) and mesh modification for each case
- (considering mesh automation in ICEM-CFD): 1x45 = 45 man-hours
- Cases management (Fluent): 1x46 = 46 man-hours
- Cases execution: 4+45 = 49 CPU*-hours
- use of other optimization tools: ??

2 days CPU-time (optimistically...)

✓ 1 day man-time

✓ 2 days CPU-time

Next Steps

more cross sections

higher resolution

> trim and sinkage corrections

- 2 Degrees of Freedom
- Moving mesh

Thank you for your attention

