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Abstract This paper presents an industrial approach to optimization under uncer-
tainty where the design variables and the uncertainties are handled by two different
optimization modules of ANSYS Fluent, respectively the Adjoint Solver and the
RBF morph. The approach shown here is based on the use of the Adjoint solver to
drive the shape modification of the considered geometry: the adjoint sensitivities are
used to guide intelligent design modifications and improve the product perfomance.
The presence of geometrical uncertainties is handled using the RBF morph that
combines a very accurate control of the geometrical parameters with an extremely
fast mesh deformation: a system of radial functions is used to produce a solution
for the mesh movement/morphing, from a list of source points and their displace-
ments. An industrial application is presented to show that the Adjoint solver can be
used for optimization of a Formula 1 front wing, taking into account the geometrical
uncertainties associated with the rotating rubber tire and vehicle steering.

1 Introduction

This work is motivated by the heightened interest in uncertainty quantification of
numerical simulations in recent years and, as a consequence, by the interest in a
procedure of optimization under uncertainty. One of the objectives of this work is
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to create a tight coupling between the different optimization modules of ANSYS
Fluent[1] in order to challenge shape optimization problems characterized by geo-
metrical uncertainties.

Performing optimization and uncertainty analysis in presence of a large number
of design and uncertain variables is a key challenge and the pacing item for the
deployment of the proposed methodology based on the use of Adjoint solutions.
Petrone et al.[19, 3] optimized the shape of a F1 wheel assembly and proved the
necessity of taking account of the uncertainties from the definition stage of the op-
timization procedure. Nevertheless the genetic algorithm driven optimization under
uncertainty and the need to prescribe deformation guidelines during the definition
stage of the optimization problem lead to important problems. Above all, the cost
of heuristic optimization techniques in robust design is high and their application in
the industrial community is still prohibitive. Additionally the need to prescribe ”a-
priori” deformation guidelines results in a limiting factor when exploring the design
space to obtain design solutions that can have a breakthrough impact on the related
industry.

For these reasons in this work we assess the use of the Adjoint Solver[11, 2]
to guide a robust optimization problem in order to i) reduce the computation ef-
fort required by the exploration of the design space, ii) explore non-intuitive design
solutions and iii) use combinations of the sensitivity fields to take account of the
uncertainties involved in the problem.

2 Optimization Under Uncertainty

Let’s consider an objective function in the form f (z,ξ ) where z ∈ Z represents a
design variable and ξ ∈Ω represents the input uncertainty. It is possible to introduce
an operator Φ , applied to f (z,ξ ) in order to obtain a real-valued attribute of it.
Considering this assumption, a problem of optimization under uncertainty reduces
to the problem of finding z ∈ Z such that

Φ( f (z,ξ ))≤Φ( f (z,ξ )) ∀z ∈ Z (1)

Different definition for Φ might be used, for example Φ( f (z,ξ )) are the statisti-
cal moments of f . The simplest choice is obviously the expected value of f (referred
to as Mean Value Optimization):

Φ ( f (z,ξ )) =
∫

Ω

f (z,ξ )Ψξ dξ = µ(z) (2)

where Ψξ is the probability density function of ξ . This method is widely used,
mostly because the mean is the faster converging moment and relatively few sam-
ples are required to obtain a good estimate. Often, however, the mean alone is not
able to capture and represent satisfactorily the uncertainties embedded in a given
design optimization problem. To overcome this drawback, a possible approach is
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the introduction in the objective function of penalization terms that are function of
higher order moments (Mean Value Penalty Optimization):

Φ ( f (z,ξ )) = w1µ(z)+

(
N

∑
k=2

wkmk ( f (z,ξ ))

)1/2

(3)

where w1, ...,wN are (tunable) weights, N is the maximum order of statistical mo-
ments considered and mk ( f (z,ξ )) is the k-th order moment of f (z,ξ ). This leads to
(for w1 = w2 = 1 and N = 2)

Φ ( f (z,ξ )) = µ(z)+σ(z) (4)

where σ2 (z) is the variance of f (z,ξ ). In this case the optimization under uncer-
tainty seeks to minimize the mean plus standard deviation, giving a formal and
mathematically sound construction for the idea of insensitive design.

Another possibility is the Minimax criterion[21], very popular in statistical de-
cision theory, according to which the worst case due to uncertainty is the objective
for the optimization. This ensures protection against worst case scenario, but it is
often excessively conservative.

A popular approach is the Constrained Optimization[14], formulated to find
z ∈ Z such that {

µ(z)≤ µ(z) ∀z ∈ Z
s.to: mk ( f (z,ξ ))≤Ck ∀k ∈ 2,N

(5)

where Ck is a constraint on the the order k central moment of f (z,ξ ). It easy to
notice, as drawback, that the constraint could not be feasible.

The Multi-objective Approach[20] is also widely adopted. Here different statis-
tical moments are used as independent tradeoff objectives. In this case a challenge is
posed by the increase in the dimensionality of the Pareto front when several statisti-
cal moments are used. The research related to the multi-objective method has led to
several extensions of the classical Pareto front concept [6, 8, 9, 10, 12, 22, 19].

3 Optimization under uncertainty of a NACA 0012 airfoil

In this section different methodologies for optimization under uncertainty will be
used to optimize the shape of a NACA 0012 airfoil using the Fluent AS, starting
from a deterministic optimization (i.e. neglecting the presence of uncertainties) used
as reference result. The importance of taking in account uncertainty in the optimiza-
tion of airfoil shape has been addressed in different aerospace and renewable energy
studies[15, 16, 17].

The proposed optimization procedure aims to define a general workflow that will
be generalized for the more complex applications presented in next sessions of this
paper. Even if in aerospace applications the angle of attack is a design condition and
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not an uncertainty, in this study it will be assumed as uncertainty to pave the way for
the F1 application proposed in the next section. The realizable k-ε turbulence model
has been adopted in this study. The FLUENT coupled solver has been preferred to
the segrated solver and second order upwind discretization has been chosen for flow
and turbulence equations discretization. The velocity magnitude considered in this
test case is 100 m/s and, in deterministic conditions, the angle of attack equals 1.55o.
The turbulence intensity has been assumed to be 1% and the turbulent viscosity
ratio to be 1. The contour of the pressure flow field around the baseline NACA 0012
airfoil has been show in Figure 3(a) as refence result.

3.1 Deterministic optimization

In this section the Fluent AS is used to guide intelligent design modifications to
the baseline case when the uncertainties are not considered in the design procedure.
This preliminary study is aimed to assess the ability of the AS to provide a series
of design modifications to improve the airfoil performance in terms of efficiency, at
a given angle of attack. The deterministic optimization problem is stated as finding
z ∈ Z such that 

L
D (z)

∣∣
α=α̂
≥ L

D (z)
∣∣
α=α̂

∀z ∈ Z
s.to:
c(z) = c0

(6)

where L is the lift force, D is the drag force, α is the angle of attack, c(z) is
the airfoil chord, α̂ = 1.55o and c0=1 m. The prodecure adopted to perform the
deterministic optimization the Fluent AS is described in Figure 1(a).

1. CONTROL VOLUME DEFINITION. A control volume is defined enclosing the
initial geometry to be optimized. A grid of control points is superimposed over
the mesh in order to facilitate the mesh morphing: moving these control points
causes the mesh to smoothly morph by relating them to the grid nodes using
Bernstein polynomials. The number of control points has been chosen to be 30
in x direction and 20 in y direction. The morhping box ranges beween -0.3 m and
1.3 m in x direction and between -0.3 m and 0.3 m in y direction.

2. CFD SOLVER CONVERGENCE. A converged CFD solution is evaluated.
3. ADJOINT SOLVER CONVERGENCE. The adjoint solver is converged for the

chosen observables (e.g. efficiency), in the same fashion of a CFD solver (i.e.
residual based convergence, see Figure 2(a)) and the sensitivies are evaluated.

4. MORPHING. The optimal displacement found by the AS are smoothed and used
to morph the geometry via the defined array of control points.

5. ENFORCING CONTRAINTS. Since the legality box chosen in this application
doesn’t touch the boundaries of the aifoil, during the optimization procedure it
could be possible that the chord of the airfoil is reduced or increased by the
AS. The choice of a relatively large morphing box in the AS is justified by the
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(a) deterministic optimization (b) probabilistic optimization

Fig. 1 Flowcharts of the optimization procedures using Fluent AS

necessity to not freeze the deformations of surfaces that lie on its boundaries,
enhancing the exploration of the design space and avoiding an over-constrained
optimization problem. To prevent the optimization result from this scenario, a
check of the airfoil length is performed after each design modification. In the
case that the airfoil length is altered by the morphing, a coherent scale of the
mesh is perfomed to balance this effect and recover the original dimension.

6. All the steps 2-5 are repeated in a series of design modifications until the global
optimum of the optimization problem is reached and the final design is obtained.

The contour of the pressure flow field around the optimized airfoil has been re-
ported in Figure 3(b). The convergence history of the airfoil efficiency is reported
in Figure 5(a). It is possible to notice that the AS is able to produce a monotonic
increase of the objective function in each stage of the optimization procedure by
successfully driving it.

Comparing Figures 3(a) and 3(b) it is possible to notice that the Fluent AS has
morphed the baseline airfoil in order to enhance the velocity expansion on its upper
surface, resulting in a particular distribution of the camberline and thickness that had
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(a) baseline geometry (b) 105 design optimization stages

Fig. 2 Residual convergence of the Adjoint Solver

(a) NACA 0012 (b) deterministic optimization

Fig. 3 Pressure distribution at α=1.55o

been difficult to predict from the defition stage of the optimization procedure. The
resulting lift to drag ratio of the optimized airfoil is 58.04, compared to the starting
value of 12.11.

In the next sections the first two statistical moments, indipendently and in their
combination, will be used to take in account uncertainty in the design procedure.

3.2 Mean Value Optimization

In this section the angle of attack, previously fixed as design condition, is assumed
to be an uncertain variable. We represent the uncertainty as purely stochastic, i.e.
a measure of variability and our goal is to establish quantitatively its effect on the
optimization procedure. A uniform distribution has been assumed for α , with -1.55o

and 5o respectively as lower and upper bounds. Latin Hypercube Sampling (LHS)
[25], a stratified-random procedure which provides an efficient way of sampling
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variables from their distributions, has been used to propagate the input uncertainty
into the QoI.

The computational procedure is obviously modified by the presence of uncer-
tainty, as shown in Figure 1(b). The Mean Value optimization problem is stated as
finding z ∈ Z such that  µ( L

D (z,α))≥ µ( L
D (z,α)) ∀z ∈ Z

s.to:
c(z) = c0

(7)

where µ( L
D ) is the expected value of the efficiency and α =U[-1.55o,5o] is a

uniform distribution of the angle of attack. 20 LHS samples have been used to eval-
uate the mean efficiency in each stage of the optimization procedure. The results of
the two optimization procedures differ most in the leading edge and the lower part
of the airfoil section. Additionally the mean value optimized airfoil results to be
slightly thicker than its deterministic counterpart. The contour of the pressure flow
field around the optimized airfoil has been reported in Figures 4(a), 4(g) and 4(m)
at 3 different angles of attack, corresponding to 3 LHS samples.

3.3 Variance Optimization

In the previous section the AS was used to obtain the best mean efficiency in corre-
spondence of the prescribed distrution of the angle of attack. In this section, instead,
the variance of the efficiency is considered as objective. By minimizing the variance
of the efficiency the AS seeks to guarantee a stable value of the performance among
all the possible flow conditions, without caring for its actual value. The Variance
based optimization problem is stated as finding z ∈ Z such thatσ2( L

D (z,α))≤ σ2( L
D (z,α)) ∀z ∈ Z

s.to:
c(z) = c0

(8)

The contours of the pressure flow fields have been reported in Figures 4(b), 4(h)
and 4(n).

3.4 Mean Value Penalty Optimization

In this section the mean and the standard deviation of the efficiency are linearly
combined in a unique objective using the Mean Value Penalty approach and the
optimization problem is stated as finding z ∈ Z such that
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µ( L

D (z,α))−3σ( L
D (z,α))≤ µ( L

D (z,α))
−3σ( L

D (z,α)) ∀z ∈ Z
s.to:
c(z) = c0

(9)

The contours of the pressure flow fields have been reported in Figures 4(c), 4(i)
and 4(o).

(a) MVO: α =−1.55o (b) VO: α =−1.55o (c) MVPO: α =−1.55o

(d) MVO: α = 1.7250o (e) VO: α = 1.7250o (f) MVPO: α = 1.7250o

(g) MVO: α = 5o (h) VO: α = 5o (i) MVPO: α = 5o

Fig. 4 Airfoil optimization under uncertainty

3.5 Analysis under uncertainty

In this section ANSYS DesignXplorer (DX) has been used to propate the input un-
certainty in the QoI by using LHS. The Six Sigma Analysis component of ANSYS
DX has been used to evaluate the Probability Density Function (PDF) of the airfoil
efficiency, as shown in Figure 6(a). The PDFs of the efficiency for the NACA 0012
and the optimized airfois have been reported in Figure 6(b).

It is possible to notice that the NACA 0012 efficiency (black) shows a quite uni-
form distribution with a very high variance. This means that values of the efficiency
of -10 and 30 are almost equiprobable. The deterministic optimization (DO) solu-
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(a) convergence histories (b) airfoil shapes

Fig. 5 Comparison of the optimization methodologies

(a) ANSYS DX (b) PDFs of the QoI

Fig. 6 Analysis under uncertainty

tion (blu) results to be not only, in average, more efficient but also more robust with
respect to the uncertainty, as shown by the reduced extent of its support. When the
mean value otpimization (MVO) is used (red), on one hand the mean efficiency is
maximized and it is possible to notice that the distribution becomes more peaked
toward higher values of the performance. On the other hand the variance increases
since it has not been considered in the formulation of the optimization problem. If
the variance optimization (VO) is considered (green), the resulting PDF is almost
deterministic (e.g. delta dirac function), being almost insensitive to the angle of at-
tack but showing a reduced average performance.

Finally when the mean value penalty optimization (MVPO) is used a trade-off
solution (magenta) between the maximization of the mean efficiency and the min-
imization of the variance it is obtained. The resulting solution appears to have a
slightly higher mean efficiency than that obtained with the deterministic case, but
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with a great improvement of the variance. The first four statistical moments of the
efficiency have been reported in Table 1 for all the obtained configurations.

Table 1 airfoil efficiency statistical moments

NACA 0012 DO MVO VO MVPO

µ 12.43 51.40 56.30 27.56 51.97
σ2 184.96 25.10 38.56 0.98 8.88
γ1 -0.16 -0.63 -0.91 -1.26 -0.30
κ 1.19 0.02 -0.43 0.83 1.37

4 Optimization under Uncertainty of a F1 front wing assembly

In this section we apply the devoped framework for optimization under uncertainty
to the computational design of a Formula 1 front wing assembly using large-scale,
three-dimensional Reynolds-Averaged Navier-Stokes simulations. The purpose of
designing the front wing is to increase the downforce while minimizing the total
drag of the assembly.

Previous studies on a similar F1 assembly[19] showed that the uncertainties that
have a significant impact on the Drag force predicition are the tire yaw angle and the
inlet conditions: in order to obtain a robust design of the front wing the optimization
procedure needs to account for uncertainties arising from variables in flow condi-
tions as well as from variability in the flexible tire geometry. This baseline geometry
consists of 10 million polyhedral mesh cells.

RBF Morph[7] is used to generate multiple CFD mesh model variants, while
keeping CAD and grid generators out of the design process loop, thus substantially
saving design time and costs. The generated models are then used to compute the
flow field around the F1 front wing assembly using Fluent.

The discretization schemes of the URANS equations for momentum and turbu-
lence quantities were initially set to first order and then switched to second order for
all quantities including turbulent scalars. Once the flow settled into a regular oscillat-
ing pattern, time averaging of flow statistics was turned on. The solution was deemed
to be converged when the mean flow statistics no longer changed with additional it-
erations and all the residuals were below the value of 1e−5. Literature studies[4, 5]
where LES was used to predict the flow field around a rotating F1 wheel assembly
have shown structures like the horseshoe vortex and secondary flow vortices that
are not represented by RANS turbulence closures. These works demonstrated that
among the URANS models the Realizable k-ε turbulence model is the most accurate
at predicting the vortex eccentricity, therefore it has been adopted in this study.
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4.1 Data assimilation

The Monza circuit is reported in Figure 7(a), where the typical speeds in different lo-
cations of the tracks have been highlighted together with the adopted gear. With the
long straights forming a significant aspect of the Monza circuit layout minimising
drag is an important consideration. Even if, for this reason, in F1 industry usually
a Monza-only low drag and low downforce front wing is produced, in this work
we look for a design of the front wing that seeks to balance between two trade-off
objectives: i) drag minimization and ii) downforce maximization. The QoI to maxi-
mize is assumed to be the ratio of the downforce to drag, while in future works these
objectives will be handled separately.

Lower and upper bounds on the steering angle have been assumed respectively
as 0o and 15o, while lower and upper bounds on the velocity have been assumed re-
spectively as 22.35m/s and 88.51m/s. The track has been subdived in 11 segments
and for each segment a Normal distribution has been considered to model the prob-
ability distribution of the velocity and steering angle. The mean of each velocity
distribution has been assumed as the typical speed in that part of the track, while
the standard deviation has been assumed to be 10 percent of this value. The mean
steering angle has been assumed equal to 0 degrees when the gear adopted is the
7th, 3 degrees when the gear adopted is the 6th, 5 degrees when the gear adopted is
the 5th, 10 degrees when the gear adopted is the 4th and 15 degrees when the gear
adopted is the 3rd and the 2nd. The standard deviation of the steering angle has been
always assumed to be 1.5 degrees. A number of Monte Carlo (MC) points equal to
3.5e6 have been sampled along the track. For each segment of the track the fraction
of points sampled was equal to the ratio between the length of the segment and the
length of the circuit (5.793 km for 1 lap). The obtained joint probability of the input
uncertainties has been reported in Figure 7(b). It is possible to notice that this joint
probability reflects the realistic situation where high velocities - low steering angles
and low velocities - high steering angles are encountered during the race.

(a) Monza circuit (b) Input joint probability

Fig. 7 Autodromo Nazionale Monza
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4.2 Uncertainty propagation

In this section Simplex Stochastic Collocation (SSC)[23, 24] has been used to prop-
agate the input uncertainty into the QoI. Indeed SSC combines the effectiveness of
random sampling in higher dimensions with the accuracy of polynomial interpola-
tion. It also leads to the superlinear convergence behavior of Stochastic Collocation
methods and the robustness of MC approaches. SSC discretizes the parameter space
Ξ using non-overlapping simplex elements Ξ j from a Delaunay triangulation of
sampling points, with Ξ =

⋃ne
j=1 Ξ j, where ne is the number of elements. In each of

the simplexes Ξ j, the response surface of the quantity of interest, u(ξ ) as function
of the nξ random parameters ξ ∈ Ξ , is approximated by a polynomial w j(ξ )

w j(ξ ) =
P

∑
m=0

c j,mΨj,m(ξ ), (10)

with P+1 coefficients c j,m and basis polynomials Ψj,m(ξ ). The polynomials are
found by interpolation of the samples vk = u(ξ k) at the vertexes ξ k of the simplex
elements, with k = 1, . . . ,ns, where ns is the number of samples. In previous studies
on wind turbines simulations[15, 16, 17] , both LHS and SSC outperformed classical
MC and it has been proved that the SSC approach leads to stable statistics requiring
only a few dozen CFD simulations. Due to these considereations 10 SSC points
have been used to propagate the input uncertainty into the QoI.

4.3 Vehicle steering using RBF Morph

The mesh of the steered vehicle can be easily obtained thanks to an advanced feature
available for the RBF Morph software. A complex sequence of RBF mesh morphing
comprised of four steps is used to: i) deform the tire imposing a prescribed amount
of lateral slip of contact patch, ii) prescribe a rigid rotation of the overall wheel
assembly about the steering axis, iii) re-project the contact patch on the ground, iv)
morph the volume mesh with information gathered on all surfaces.

The user can set-up each wheel prescribing steering kinematics (see Figure 8) and
threads belonging to the following set: tire, rim, ground, contact patch and fixed. It
is interesting to notice that thanks to an accurate calibration of the rule that defines
tire flexibility (the angular portion of tire subjected to deformation increases with
the value of lateral slip) it is possible to get a realistic behavior for tire deformation.

The contours of the pressure flow field around the front wing assembly has been
reported in Figures 11(a), 11(b) and 11(c) at 3 different race conditions, correspond-
ing to 3 SSC samples. The same SSC samples have been reported in figure 7(a) in
correspondence of the position on the circuit from where them were sampled. It
is possible to notice the effect of vehicle steering on both the left and right front
wheels. Every time that RBF Morph is used to deform the wheels additional oper-
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(a) axes definition (b) before steering (c) after steering

Fig. 8 Vehicle steering using RBF Morph

ations are performed to adjust the physics of the simulation: i) the velocity of the
inlet and the moving ground are changed to match the velocity and the direction of
the SSC sample ii) the rotational speed of the wheels is changed to be coherent with
the value of the velocity of the SSC sample and the axis direction is aligned with
the steered rotation axis. The SSC statistics reported in Table 2 have been obtained
sampling 1e3 MC points on the responce surface obtained with equation 10.

4.4 Manipulating adjoint sensitivies

A control volume is defined enclosing the initial geometry to be optimized. The
number of control points has been chosen to be Nx = 30 in x direction, Ny = 30 in
y direction and Nz = 15 in z direction. The morphing box ranges beween -0.95 m
and 0.35 m in x direction, between -0.8 m and 0.8 m in y direction and between
-0.066 m and 0.264 m in z direction as shown in Figure 9(a). The resulting number

(a) adjoint morphing box (b) normal optimal displacements

Fig. 9 F1 front wing assembly

of control points is NCP = 1.35e4. Given a control point, CP(x,y,z), the AS is able
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to estimate the sensitivities, sx(x,y,z),sy(x,y,z),sz(x,y,z), of the objective function
to its movement for a given flow condition (i.e. SSC sample). Indeed the shape
sensitivity found with the AS is smoothed on the grid of control points, resulting
in a sensitivity in x,y and z direction for each one of them. These control points
sensitivities are manipulated according to the following procedure.

1. The AS is converged for the k-th of the ns SSC samples and the control points
sensitivities, sx

k(x,y,z), sy
k(x,y,z), sz

k(x,y,z), are exported.
2. For each control point the sx

k(x,y,z),∀k ∈ [1,ns] are used as objective realizations
at SSC samples to reconstruct the response surface sx

j(x,y,z,ξ ) in the same way
it was done for the objective function in Equation 10. The same procedure is
repeated for the y and z components of the control points sensitivities.

3. For each control point the previously evaluated response surfaces are used to ex-
timate the mean, µsx(x,y,z), µsy(x,y,z), µsz(x,y,z), and the variance, σ2

sx(x,y,z),
σ2

sy(x,y,z), σ2
sz(x,y,z), of all the sensitivity components. As it is possible to notice

this operation reduces the dependency on the uncertain variables, ξ .
4. For each control point a linear combination of the mean and the standard devia-

tion is derived, e.g. µsx(x,y,z)−3σsx(x,y,z). The resulting field is considered as
a probabilistic sensitivity field.

5. The probabilistic sensitivity field is imported and used to morph the geometry.

The steps 3-5 are performed externally to ANSYS Fluent. In order to preserve the
symmetry of the front wing, the control points sensitivities were exported defining
a symmetry plane. In this way the control points sensitivities that are evaluated on
the left part of the front wing and copied and installed to the right part as if a mirror
plane lies at the mid-point of the control volume.

This procedure aims to adopt the MVPO methodology by not operating directly
on the objective, that would require an appropriate adjoint equation to be derived
and solved, but on the control point sensitivities.

4.5 Mean Value Penalty Optimization

The normal optimal displacements have been reported in Figure 9(b) for the baseline
design Monza-A. The AS is suggesting to pull out the surfaces in correspondence of
the red regions and to push in the surfaces in correspondence of the blue regions in
order to improve the design performance. This field eliminates the component of the
optimal displacement vector that lies in the plane of the wall and gives an indication
on the morphing that will be applied when moving the control points to improve
the design performance. In the proposed probabilistic framework any SSC sample
suggests a particular direction for the morphing, as shown in Figure 9(b), and the
effective deformation is obtained manipulating all the information obtained all over
the samples.

The result of the morphing procedure has been reported in Figure 10, where it
is possible to appreciate the main differences between the baseline (see 10(a)) and
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optimized configurations highlithed in the boxes A-F (see 10(b) and 10(c)). The
PDFS of the QoI have been reported in Figure 10(d). It is possible to notice how the
optimized design is skewed toward highest performances with a reduced low tail
probability. This observation is confirmed by the values of the statistical moments
reported in Table 2. The contour of the pressure flow field around the optimized
configuration has been reported in Figures 11(d), 11(e) and 11(f), in comparison
with the baseline configuration at 3 different race conditions, corresponding to 3
SSC samples.

(a) baseline (b) optimization under uncertainty

(c) comparison (d) PDFs

Fig. 10 F1 front wing assembly optimization under uncertainty

Table 2 SSC statistics

µ σ2 γ1 κ

baseline geometry 3.4012 0.0748 -0.2523 1.8316
MVPO 3.8557 0.0521 -0.6645 3.28
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(a) Baseline design: Monza-A (b) Baseline design: Monza-C (c) Baseline design: Monza-E

(d) MVPO: Monza-A (e) MVPO: Monza-C (f) MVPO: Monza-E

Fig. 11 Contours of the flow field around the baseline and optimized F1 front wing assembly

5 Conclusions

In this work we proposed a procedure to perform optiimazation under uncertainty
using the sensitivities obtained with the Fluent Adjoint Solver. We expect this as-
pect of the method to have the most impact because of the generality of the idea,
the broad applicability and the opportunity to tackle robust design in a fundamental
new way from an industrial perspective. The Formula 1 application shows the impor-
tance of taking into account uncertainties from the beginning of the design process.
Additionally using the same methodology it is possible to design different F1 com-
ponents based on the characteristics of a particular track. In future works we will
address the possibility to integrate the structural deformation of the aerodynamic
components in the probabilistic design procedure and to perform multi-objective
design optimization under uncertainty.
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